Massasa Emma H, Strassberg Rotem, Vurgaft Amit, Kauffmann Yaron, Cohen Noy, Bekenstein Yehonadav
Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
The Solid-State Institute, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
Nano Lett. 2021 Jul 14;21(13):5564-5571. doi: 10.1021/acs.nanolett.1c00962. Epub 2021 Jun 28.
Flexible semiconductor materials, where structural fluctuations and transformation are tolerable and have low impact on electronic properties, focus interest for future applications. Two-dimensional thin layer lead halide perovskites are hailed for their unconventional optoelectronic features. We report structural deformations via thin layer buckling in colloidal CsPbBr nanobelts adsorbed on carbon substrates. The microstructure of buckled nanobelts is determined using transmission electron microscopy and atomic force microscopy. We measured significant decrease in emission from the buckled nanobelt using cathodoluminescence, marking the influence of such mechanical deformations on electronic properties. By employing plate buckling theory, we approximate adhesion forces between the buckled nanobelt and the substrate to be ∼ 0.12 μN, marking a limit to sustain such deformation. This work highlights detrimental effects of mechanical buckling on electronic properties in halide perovskite nanostructures and points toward the capillary action that should be minimized in fabrication of future devices and heterostructures based on nanoperovskites.
柔性半导体材料因其结构波动和转变具有可容忍性且对电子性能影响较小,而备受未来应用关注。二维薄层卤化铅钙钛矿因其非常规的光电特性而受到赞誉。我们报道了吸附在碳基底上的胶体CsPbBr纳米带通过薄层屈曲产生的结构变形。使用透射电子显微镜和原子力显微镜确定了屈曲纳米带的微观结构。我们利用阴极发光测量了屈曲纳米带发射的显著降低,这标志着这种机械变形对电子性能的影响。通过应用平板屈曲理论,我们估算出屈曲纳米带与基底之间的粘附力约为0.12 μN,这标志着维持这种变形的一个极限。这项工作突出了机械屈曲对卤化钙钛矿纳米结构中电子性能的有害影响,并指出在基于纳米钙钛矿的未来器件和异质结构制造中应尽量减少的毛细作用。