Suppr超能文献

可穿戴应用中实时癫痫检测的 RISC-V CNN 协处理器。

RISC-V CNN Coprocessor for Real-Time Epilepsy Detection in Wearable Application.

出版信息

IEEE Trans Biomed Circuits Syst. 2021 Aug;15(4):679-691. doi: 10.1109/TBCAS.2021.3092744. Epub 2021 Sep 15.

Abstract

Epilepsy is a common clinical disease. Severe epilepsy can be life-threatening in certain unexpected conditions, so it is important to detect seizures instantly with a wearable device and to provide treatment within the golden window. The observation of the electroencephalography (EEG) signal is an imperative method to assist correct epilepsy diagnosis. To detect and classify EEG signals, a convolutional neural network (CNN) is an intuitive and appropriate method that borrows expertise from neurologists. However, the computational cost of training and inference on artificial intelligence (AI)-based solutions make software-only and hardware-only solutions incompetent for real-time monitoring on embedded devices. Hence, this study proposes three key contributions for the challenge, namely, an algorithm framework to provide real-time epilepsy detection, a dedicated coprocessor chip implementing this framework to enable real time epilepsy detection to offload and accelerate detection algorithm, and a custom interface with the coprocessor and reduced instruction set computer-V (RISC-V) instructions to reconfigure the coprocessor and transfer data. The epilepsy detection framework is implemented in 11-layer CNN. The proposed epilepsy detection algorithm performs 97.8% accuracy for floating-point and 93.5% for fixed-point operations through animal experiments with lab rats. The RISC-V CNN coprocessor is fabricated in the TSMC 0.18-μm CMOS process. For each classification, the coprocessor consumes 51 nJ/class. and 0.9 µJ/class. energy on data transfer and inference, respectively. The detection latency on the chip is 0.012 s. With the integration of the hardware coprocessor, AI algorithms can be applied to epilepsy detection for real-time monitoring.

摘要

癫痫是一种常见的临床疾病。在某些意外情况下,严重的癫痫可能危及生命,因此使用可穿戴设备即时检测癫痫发作并在黄金窗口内提供治疗非常重要。观察脑电图(EEG)信号是辅助正确癫痫诊断的必要方法。为了检测和分类 EEG 信号,卷积神经网络(CNN)是一种直观而合适的方法,它借鉴了神经科医生的专业知识。然而,基于人工智能(AI)的解决方案的训练和推理的计算成本使得软件和硬件解决方案都无法胜任实时监测嵌入式设备的任务。因此,本研究针对该挑战提出了三个关键贡献,即提供实时癫痫检测的算法框架、实现该框架的专用协处理器芯片以实现实时癫痫检测的卸载和加速检测算法、以及与协处理器和精简指令集计算机-V(RISC-V)指令的定制接口,以重新配置协处理器并传输数据。癫痫检测框架采用 11 层 CNN 实现。所提出的癫痫检测算法通过对实验大鼠的动物实验实现了浮点精度 97.8%和定点精度 93.5%的准确率。RISC-V CNN 协处理器采用 TSMC 0.18-μm CMOS 工艺制造。对于每次分类,协处理器在数据传输和推理方面分别消耗 51 nJ/class 和 0.9 µJ/class 的能量。芯片上的检测延迟为 0.012 s。通过集成硬件协处理器,可以将人工智能算法应用于实时监测的癫痫检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验