Suppr超能文献

利用流程挖掘/深度学习架构提高糖尿病 ICU 患者的院内死亡率预测能力。

Improving the In-Hospital Mortality Prediction of Diabetes ICU Patients Using a Process Mining/Deep Learning Architecture.

出版信息

IEEE J Biomed Health Inform. 2022 Jan;26(1):388-399. doi: 10.1109/JBHI.2021.3092969. Epub 2022 Jan 17.

Abstract

Diabetes intensive care unit (ICU) patients are at increased risk of complications leading to in-hospital mortality. Assessing the likelihood of death is a challenging and time-consuming task due to a large number of influencing factors. Healthcare providers are interested in the detection of ICU patients at higher risk, such that risk factors can possibly be mitigated. While such severity scoring methods exist, they are commonly based on a snapshot of the health conditions of a patient during the ICU stay and do not specifically consider a patient's prior medical history. In this paper, a process mining/deep learning architecture is proposed to improve established severity scoring methods by incorporating the medical history of diabetes patients. First, health records of past hospital encounters are converted to event logs suitable for process mining. The event logs are then used to discover a process model that describes the past hospital encounters of patients. An adaptation of Decay Replay Mining is proposed to combine medical and demographic information with established severity scores to predict the in-hospital mortality of diabetes ICU patients. Significant performance improvements are demonstrated compared to established risk severity scoring methods and machine learning approaches using the Medical Information Mart for Intensive Care III dataset.

摘要

糖尿病重症监护病房(ICU)患者发生并发症导致院内死亡的风险增加。由于影响因素众多,评估死亡的可能性是一项具有挑战性和耗时的任务。医疗保健提供者希望能够检测到风险更高的 ICU 患者,以便有可能减轻风险因素。虽然存在这样的严重程度评分方法,但它们通常基于 ICU 住院期间患者健康状况的快照,而不特别考虑患者的既往病史。在本文中,提出了一种流程挖掘/深度学习架构,通过纳入糖尿病患者的病史来改进现有的严重程度评分方法。首先,将过去住院就诊的健康记录转换为适合流程挖掘的事件日志。然后,使用事件日志发现描述患者过去住院就诊情况的流程模型。提出了一种衰减重播挖掘的改编版,将医疗和人口统计信息与现有的严重程度评分相结合,以预测糖尿病 ICU 患者的院内死亡率。与使用 Medical Information Mart for Intensive Care III 数据集的既定风险严重程度评分方法和机器学习方法相比,该方法显著提高了性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验