Razo Martha, Kotini Pavitra, Li Jing, Khosla Shaveta, Buhimschi Irina A, Hoek Terry Vanden, Rios Marina Del, Darabi Houshang
Department of Mechanical and Industrial Engineering, University of Illinois Chicago, 942 W Taylor St., Chicago, IL 60607, USA.
Department of Emergency Medicine, University of Illinois Chicago College of Medicine, Chicago, IL 60612, USA.
Bioengineering (Basel). 2025 Jan 29;12(2):124. doi: 10.3390/bioengineering12020124.
Out-of-hospital cardiac arrest (OHCA) is a major public health burden due to its high mortality rate, sudden nature, and long-term impact on survivors. Consequently, there is a crucial need to create prediction models to better understand patient trajectories and assist clinicians and families in making informed decisions. We studied 107 adult OHCA patients admitted at an academic Emergency Department (ED) from 2018-2023. Blood samples and ocular ultrasounds were acquired at 1, 6, and 24 h after return of spontaneous circulation (ROSC). Six classes of clinical and novel variables were used: (1) Vital signs after ROSC, (2) pre-hospital and ED data, (3) hospital admission data, (4) ocular ultrasound parameters, (5) plasma protein biomarkers and (6) sex steroid hormones. A base model was built using 1 h variables in classes 1-3, reasoning these are available in most EDs. Extending from the base model, we evaluated 26 distinct neural network models for prediction of neurological outcome by the cerebral performance category (CPC) score. The top-performing model consisted of all variables at 1 h resulting in an AUROC score of 0.946. We determined a parsimonious set of variables that optimally predicts CPC score. Our research emphasizes the added value of incorporating ocular ultrasound, plasma biomarkers, sex hormones in the development of more robust predictive models for neurological outcome after OHCA.
院外心脏骤停(OHCA)因其高死亡率、突发性以及对幸存者的长期影响,成为一项重大的公共卫生负担。因此,迫切需要创建预测模型,以更好地了解患者的病程,并协助临床医生和家属做出明智的决策。我们研究了2018年至2023年期间在一家学术急诊科(ED)收治的107例成年OHCA患者。在自主循环恢复(ROSC)后1小时、6小时和24小时采集血样和眼部超声检查。使用了六类临床和新变量:(1)ROSC后的生命体征,(2)院前和急诊数据,(3)入院数据,(4)眼部超声参数,(5)血浆蛋白生物标志物,以及(6)性类固醇激素。使用第1 - 3类中的1小时变量构建了一个基础模型,理由是这些变量在大多数急诊科都可获取。在基础模型的基础上,我们评估了26种不同的神经网络模型,以通过脑功能分类(CPC)评分预测神经功能结局。表现最佳的模型由1小时时的所有变量组成,曲线下面积(AUROC)评分为0.946。我们确定了一组简约的变量,可最佳预测CPC评分。我们的研究强调了在开发更强大的OHCA后神经功能结局预测模型时,纳入眼部超声、血浆生物标志物和性激素的附加价值。