Suppr超能文献

可解释的深度学习作为解密多发性硬化症疾病特征的一种手段。

Interpretable deep learning as a means for decrypting disease signature in multiple sclerosis.

机构信息

Department of Computer Science, University of Verona, Verona, Italy.

Athena Project-Team, Inria Sophia Antipolis-Méditerranée, Université Côte d'Azur, Sophia Antipolis, France.

出版信息

J Neural Eng. 2021 Jul 19;18(4). doi: 10.1088/1741-2552/ac0f4b.

Abstract

The mechanisms driving multiple sclerosis (MS) are still largely unknown, calling for new methods allowing to detect and characterize tissue degeneration since the early stages of the disease. Our aim is to decrypt the microstructural signatures of the Primary Progressive versus the Relapsing-Remitting state of disease based on diffusion and structural magnetic resonance imaging data.A selection of microstructural descriptors, based on the 3D-Simple Harmonics Oscillator Based Reconstruction and Estimation and the set of new algebraically independent Rotation Invariant spherical harmonics Features, was considered and used to feed convolutional neural networks (CNNs) models. Classical measures derived from diffusion tensor imaging, that are fractional anisotropy and mean diffusivity, were used as benchmark for diffusion MRI (dMRI). Finally, T1-weighted images were also considered for the sake of comparison with the state-of-the-art. A CNN model was fit to each feature map and layerwise relevance propagation (LRP) heatmaps were generated for each model, target class and subject in the test set. Average heatmaps were calculated across correctly classified patients and size-corrected metrics were derived on a set of regions of interest to assess the LRP contrast between the two classes.Our results demonstrated that dMRI features extracted in grey matter tissues can help in disambiguating primary progressive multiple sclerosis from relapsing-remitting multiple sclerosis patients and, moreover, that LRP heatmaps highlight areas of high relevance which relate well with what is known from literature for MS disease.Within a patient stratification task, LRP allows detecting the input voxels that mostly contribute to the classification of the patients in either of the two classes for each feature, potentially bringing to light hidden data properties which might reveal peculiar disease-state factors.

摘要

驱动多发性硬化症 (MS) 的机制在很大程度上仍然未知,这就需要新的方法来检测和描述疾病早期的组织退化。我们的目的是基于弥散和结构磁共振成像数据,解析原发性进行性与复发缓解性疾病状态的微观结构特征。我们选择了一些基于 3D-Simple Harmonics Oscillator Based Reconstruction and Estimation 和一组新的代数独立旋转不变球谐特征的微观结构描述符,并将其用于卷积神经网络 (CNN) 模型。从弥散张量成像中得出的经典度量,即各向异性分数和平均弥散度,被用作弥散磁共振成像 (dMRI) 的基准。最后,还考虑了 T1 加权图像,以便与现有技术进行比较。为每个特征图拟合了一个 CNN 模型,并为每个模型、目标类和测试集中的每个受试者生成了层间相关性传播 (LRP) 热图。在正确分类的患者中计算平均热图,并在一组感兴趣区域上计算大小校正指标,以评估两个类之间的 LRP 对比度。我们的结果表明,在灰质组织中提取的 dMRI 特征有助于区分原发性进行性多发性硬化症和复发缓解性多发性硬化症患者,此外,LRP 热图突出了高相关性的区域,这与多发性硬化症文献中已知的内容很好地相关。在患者分层任务中,LRP 允许检测到每个特征中对患者分类为两个类别中任一类贡献最大的输入体素,从而揭示出可能揭示特定疾病状态因素的隐藏数据特性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验