Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Jena 07743, Germany; Michael Stifel Center for Data-Driven and Simulation Science, Jena 07743, Germany.
Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Jena 07743, Germany; Michael Stifel Center for Data-Driven and Simulation Science, Jena 07743, Germany.
Z Med Phys. 2024 May;34(2):318-329. doi: 10.1016/j.zemedi.2023.12.001. Epub 2023 Dec 23.
Multiple sclerosis (MS) is a complex neurodegenerative disorder that affects the brain and spinal cord. In this study, we applied a deep learning-based approach using the StyleGAN model to explore patterns related to MS and predict disease progression in magnetic resonance images (MRI).
We trained the StyleGAN model unsupervised using T-weighted GRE MR images and diffusion-based ADC maps of MS patients and healthy controls. We then used the trained model to resample MR images from real input data and modified them by manipulations in the latent space to simulate MS progression. We analyzed the resulting simulation-related patterns mimicking disease progression by comparing the intensity profiles of the original and manipulated images and determined the brain parenchymal fraction (BPF).
Our results show that MS progression can be simulated by manipulating MR images in the latent space, as evidenced by brain volume loss on both T-weighted and ADC maps and increasing lesion extent on ADC maps.
Overall, this study demonstrates the potential of the StyleGAN model in medical imaging to study image markers and to shed more light on the relationship between brain atrophy and MS progression through corresponding manipulations in the latent space.
多发性硬化症(MS)是一种复杂的神经退行性疾病,影响大脑和脊髓。在这项研究中,我们应用了一种基于深度学习的方法,使用 StyleGAN 模型来探索与 MS 相关的模式,并预测磁共振图像(MRI)中的疾病进展。
我们使用 MS 患者和健康对照者的 T 加权 GRE MR 图像和基于扩散的 ADC 图对 StyleGAN 模型进行无监督训练。然后,我们使用训练好的模型从真实输入数据中重采样 MR 图像,并通过在潜在空间中的操作对其进行修改,以模拟 MS 进展。我们通过比较原始图像和操作图像的强度分布来分析模拟疾病进展的结果相关模式,并确定脑实质分数(BPF)。
我们的结果表明,通过在潜在空间中操作 MR 图像可以模拟 MS 进展,这可以从 T 加权和 ADC 图上的脑容量损失以及 ADC 图上的病变范围增加得到证明。
总体而言,这项研究表明 StyleGAN 模型在医学成像中的潜力,可以用于研究图像标志物,并通过在潜在空间中的相应操作,进一步了解脑萎缩与 MS 进展之间的关系。