People's Hospital of Baise, Baise, P.R. China.
Department of Anatomy, Southern Medical University, Guangzhou, P.R. China.
In Vivo. 2021 Jul-Aug;35(4):2197-2205. doi: 10.21873/invivo.12491.
BACKGROUND/AIM: Surgical treatment for spinal deformity aims to correct malformation, release the nerves, and reconstruct spinal stability. To explore and develop a new improved spinal correction system (ISCS) for clinical application, we studied the stability and biomechanical characteristics of the ISCS through finite element analysis and comparison of the ISCS with the pedicle screw and rod system (PSRS).
Using L1-L3 CT image data of a normal adult male lumbar spine for establishment of L1-L3 finite element model, we established posterior internal fixation models for a comparative finite element analysis of PSRS and ISCS. An axial load of 500 N and a moment of 10 N•m were applied to L1 to simulate flexion, extension, lateral bending, and axial rotation. Stress distribution characteristics, load sharing, strain bending stiffness and strain angle change of the models were measured.
In flection and extension directions, the maximum stress of the L2 vertebral body and the L1/2 and L2/3 discs in PSRS was less than that of ISCS. In lateral bending and axial rotation directions, the maximum stress between PSRS and ISCS was similar. However, the stress shielding rate of L2, L1/2, and L2/3 intervertebral discs in ISCS was significantly lower than that of PSRS. We also found that both models had similar angular displacement and maximum displacement in lateral bending direction, but PSRS had a lower angular displacement and maximum displacement in flection and extension directions. Finally, we showed that PSRS had similar angular displacement and a lower maximum displacement compared with ISCS in axial rotation, whereas ISCS had lower bending stiffness than PSRS in different directions.
ISCS can effectively fix spinal deformities compared to PSRS. ISCS provides a new option for orthopedic surgery treatment of scoliosis and, therefore, warrants further clinical studies in patients with other spinal deformities.
背景/目的:脊柱畸形的手术治疗旨在矫正畸形、释放神经并重建脊柱稳定性。为了探索和开发一种新的改良脊柱矫正系统(ISCS)用于临床应用,我们通过有限元分析和 ISCS 与椎弓根螺钉和棒系统(PSRS)的比较,研究了 ISCS 的稳定性和生物力学特性。
使用正常成年男性腰椎 L1-L3 的 CT 图像数据建立 L1-L3 的有限元模型,建立 PSRS 和 ISCS 比较有限元分析的后路内固定模型。在 L1 上施加 500N 的轴向载荷和 10N•m 的弯矩,模拟屈伸、侧屈和轴向旋转。测量模型的应力分布特征、载荷分担、应变弯曲刚度和应变角度变化。
在屈伸方向上,PSRS 的 L2 椎体和 L1/2、L2/3 椎间盘的最大应力小于 ISCS。在侧屈和轴向旋转方向上,PSRS 和 ISCS 的最大应力相似。然而,ISCS 的 L2、L1/2 和 L2/3 椎间盘的应力屏蔽率明显低于 PSRS。我们还发现,两种模型在侧屈方向上具有相似的角位移和最大位移,但 PSRS 在屈伸方向上的角位移和最大位移较低。最后,我们表明 PSRS 在侧屈方向上具有相似的角位移和较低的最大位移,而 ISCS 在轴向旋转方向上具有较低的弯曲刚度。
与 PSRS 相比,ISCS 能更有效地固定脊柱畸形。ISCS 为脊柱侧凸的矫形外科治疗提供了一种新的选择,因此需要对其他脊柱畸形患者进行进一步的临床研究。