Department of Biology, New York University, New York, NY 10003.
Department of Biology, New York University, New York, NY 10003;
Proc Natl Acad Sci U S A. 2021 Jul 13;118(28). doi: 10.1073/pnas.2101823118.
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
与其他感觉系统一样,视觉系统具有拓扑组织性:其感觉神经元、光感受器及其靶标在物理空间中保持点对点对应关系,形成视网膜图。视觉系统中电路的迭代布线方便了其发育的研究。在过去的几十年中,[研究对象]的实验揭示了指导视觉系统神经元特化和连接的原则。在这篇综述中,我们描述了通过研究[研究对象]的视觉系统发现的主要发现,并将其与哺乳动物中的类似事件进行了比较。我们重点介绍了时间和空间模式如何产生不同的细胞类型,引导分子如何将神经元的轴突和树突分布在正确的靶区,脊椎动物和无脊椎动物如何生成它们的视网膜图,以及神经元迁移所需的分子和机制。我们认为,用于布线果蝇视觉系统的基本原则广泛适用于其他系统,并强调它作为研究神经系统发育的模型的重要性。