Suppr超能文献

通过文本挖掘和生物信息学分析寻找乳腺癌和牙周炎中的必需基因和药物发现。

Searching for essential genes and drug discovery in breast cancer and periodontitis via text mining and bioinformatics analysis.

机构信息

Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.

出版信息

Anticancer Drugs. 2021 Nov 1;32(10):1038-1045. doi: 10.1097/CAD.0000000000001108.

Abstract

The primary purpose of the study was (1) to search for the essential genes associated with breast cancer and periodontitis, and (2) to identify candidate drugs targeted to these genes for expanding the potential drug indications. The genes related to both breast cancer and periodontitis were determined by text mining. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis were performed on these genes, and protein-protein interaction analysis was carried out to export significant module genes. Drug-gene interaction database was employed for potential drug discovery. We identified 221 genes common to both breast cancer and periodontitis. The top six significant enrichment terms and 15 enriched signal pathways were selected. Among 24 significant genes demonstrated as a gene cluster, we found SERPINA1 and TF were significantly related to poor overall survival between the relatively high and low groups in patients. Using the final two genes, 12 drugs were identified that had potential therapeutic effects. SERPINA1 and TF were screened out as essential genes related to both breast cancer and periodontitis, targeting 12 candidate drugs that may expand drug indications. Drug discovery using text mining and analysis of different databases can promote the identification of existing drugs that have the potential of administration to improve treatment in breast cancer.

摘要

本研究的主要目的是

(1) 寻找与乳腺癌和牙周炎相关的必需基因;(2) 鉴定针对这些基因的候选药物,以扩大潜在的药物适应证。通过文本挖掘确定与乳腺癌和牙周炎相关的基因。对这些基因进行基因本体和京都基因与基因组百科全书分析,并进行蛋白质-蛋白质相互作用分析以导出显著的模块基因。利用药物-基因相互作用数据库进行潜在药物的发现。我们确定了 221 个同时与乳腺癌和牙周炎相关的基因。选择了前 6 个显著富集的术语和 15 个富集的信号通路。在作为基因簇显示的 24 个显著基因中,我们发现 SERPINA1 和 TF 在乳腺癌患者中,相对高和低两组之间的总体生存预后较差,具有显著相关性。使用最后两个基因,确定了 12 种具有潜在治疗效果的药物。SERPINA1 和 TF 被筛选为与乳腺癌和牙周炎均相关的必需基因,针对这 12 种候选药物可能会扩大药物适应证。使用文本挖掘和不同数据库的分析进行药物发现,可以促进确定现有药物的潜在给药途径,以改善乳腺癌的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16e1/8517104/a19389aa1cfb/acd-32-1038-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验