Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda-shi, Hyogo, Japan.
Nat Commun. 2021 Jun 28;12(1):3985. doi: 10.1038/s41467-021-23286-7.
The Great Oxygenation Event (GOE), ca. 2.4 billion years ago, transformed life and environments on Earth. Its causes, however, are debated. We mathematically analyze the GOE in terms of ecological dynamics coupled with a changing Earth. Anoxygenic photosynthetic bacteria initially dominate over cyanobacteria, but their success depends on the availability of suitable electron donors that are vulnerable to oxidation. The GOE is triggered when the difference between the influxes of relevant reductants and phosphate falls below a critical value that is an increasing function of the reproductive rate of cyanobacteria. The transition can be either gradual and reversible or sudden and irreversible, depending on sources and sinks of oxygen. Increasing sources and decreasing sinks of oxygen can also trigger the GOE, but this possibility depends strongly on migration of cyanobacteria from privileged sites. Our model links ecological dynamics to planetary change, with geophysical evolution determining the relevant time scales.
大氧化事件(GOE)发生在约 24 亿年前,改变了地球的生命和环境。然而,其成因仍存在争议。我们从生态动力学的角度,结合地球的变化,对大氧化事件进行了数学分析。最初,厌氧光合作用细菌在蓝藻之上占主导地位,但它们的成功取决于合适的电子供体的可用性,而这些电子供体容易被氧化。当相关还原剂和磷酸盐的流入量与流出量之差低于一个临界值时,就会触发大氧化事件,而这个临界值是蓝藻繁殖率的增函数。这个过渡可以是逐渐的和可逆的,也可以是突然的和不可逆的,这取决于氧气的来源和汇。增加氧气的来源和减少氧气的汇也可以触发大氧化事件,但这种可能性很大程度上取决于蓝藻从有利位置的迁移。我们的模型将生态动力学与行星变化联系起来,地球物理演化决定了相关的时间尺度。