Suppr超能文献

基于巯基修饰金电极的 DNA 电检测中的氧化还原缓冲效应。

Redox Buffering Effects in Potentiometric Detection of DNA Using Thiol-Modified Gold Electrodes.

机构信息

Division of Solid-State Electronics, Department of Electrical Engineering, Ångström Laboratory, Uppsala University, P.O. Box 65, Uppsala SE-75103, Sweden.

Department of Chemistry-Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden.

出版信息

ACS Sens. 2021 Jul 23;6(7):2546-2552. doi: 10.1021/acssensors.0c02700. Epub 2021 Jun 29.

Abstract

Label-free potentiometric detection of DNA molecules using a field-effect transistor (FET) with a gold gate offers an electrical sensing platform for rapid, straightforward, and inexpensive analyses of nucleic acid samples. To induce DNA hybridization on the FET sensor surface to enable potentiometric detection, probe DNA that is complementary to the target DNA has to be immobilized on the FET gate surface. A common method for probe DNA functionalization is based on thiol-gold chemistry, immobilizing thiol-modified probe DNA on a gold gate with thiol-gold bonds. A self-assembled monolayer (SAM), based on the same thiol-gold chemistry, is also needed to passivate the rest of the gold gate surface to prevent non-specific adsorption and to enable favorable steric configuration of the probe DNA. Herein, the applicability of such FET-based potentiometric DNA sensing was carefully investigated, using a silicon nanoribbon FET with a gold-sensing gate modified with thiol-gold chemistry. We discover that the potential of the gold-sensing electrode is determined by the mixed potential of the gold-thiol and gold-oxygen redox interactions. This mixed potential gives rise to a redox buffer effect which buffers the change in the surface charge induced by the DNA hybridization, thus suppressing the potentiometric signal. Analogous redox buffer effects may also be present for other types of potentiometric detections of biomarkers based on thiol-gold chemistry.

摘要

使用金栅场效应晶体管 (FET) 进行无标记的 DNA 分子的电位检测为快速、直接、廉价地分析核酸样品提供了一种电传感平台。为了在 FET 传感器表面上诱导 DNA 杂交以实现电位检测,必须将与靶 DNA 互补的探针 DNA固定在 FET 栅极表面上。一种常见的探针 DNA 功能化方法基于硫醇-金化学,通过硫醇-金键将巯基修饰的探针 DNA固定在金栅极上。还需要基于相同硫醇-金化学的自组装单层 (SAM) 来钝化金栅极的其余部分,以防止非特异性吸附并使探针 DNA 的有利空间构型成为可能。在此,使用经过硫醇-金化学修饰的金传感栅硅纳米带 FET 仔细研究了这种基于 FET 的电位 DNA 传感的适用性。我们发现,金传感电极的电势由金-硫醇和金-氧氧化还原相互作用的混合电势决定。这种混合电势产生了氧化还原缓冲效应,缓冲了由 DNA 杂交引起的表面电荷变化,从而抑制了电位信号。基于硫醇-金化学的其他类型的生物标志物的电位检测也可能存在类似的氧化还原缓冲效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9faf/8314270/687f17c24893/se0c02700_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验