Center for Informational Biology at the University of Electronic Science and Technology of China, Chengdu 610054, China.
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab244.
The rapid spread of SARS-CoV-2 infection around the globe has caused a massive health and socioeconomic crisis. Identification of phosphorylation sites is an important step for understanding the molecular mechanisms of SARS-CoV-2 infection and the changes within the host cells pathways. In this study, we present DeepIPs, a first specific deep-learning architecture to identify phosphorylation sites in host cells infected with SARS-CoV-2. DeepIPs consists of the most popular word embedding method and convolutional neural network-long short-term memory network architecture to make the final prediction. The independent test demonstrates that DeepIPs improves the prediction performance compared with other existing tools for general phosphorylation sites prediction. Based on the proposed model, a web-server called DeepIPs was established and is freely accessible at http://lin-group.cn/server/DeepIPs. The source code of DeepIPs is freely available at the repository https://github.com/linDing-group/DeepIPs.
SARS-CoV-2 病毒在全球范围内的迅速传播,导致了一场巨大的健康和社会经济危机。鉴定磷酸化位点是理解 SARS-CoV-2 感染的分子机制以及宿主细胞内途径变化的重要步骤。在这项研究中,我们提出了 DeepIPs,这是一种专门用于鉴定感染 SARS-CoV-2 的宿主细胞中磷酸化位点的首个深度学习架构。DeepIPs 由最流行的词嵌入方法和卷积神经网络-长短期记忆网络架构组成,以进行最终预测。独立测试表明,与其他用于一般磷酸化位点预测的现有工具相比,DeepIPs 提高了预测性能。基于所提出的模型,建立了一个名为 DeepIPs 的网络服务器,并可在 http://lin-group.cn/server/DeepIPs 上免费访问。DeepIPs 的源代码可在存储库 https://github.com/linDing-group/DeepIPs 上免费获取。