Suppr超能文献

抗血管内皮生长因子治疗在新生血管性年龄相关性黄斑变性中的预测概率。

Probabilistic Forecasting of Anti-VEGF Treatment Frequency in Neovascular Age-Related Macular Degeneration.

机构信息

Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA.

Department of Ophthalmology, University of Bonn, Bonn, Germany.

出版信息

Transl Vis Sci Technol. 2021 Jun 1;10(7):30. doi: 10.1167/tvst.10.7.30.

Abstract

PURPOSE

To probabilistically forecast needed anti-vascular endothelial growth factor (anti-VEGF) treatment frequency using volumetric spectral domain-optical coherence tomography (SD-OCT) biomarkers in neovascular age-related macular degeneration from real-world settings.

METHODS

SD-OCT volume scans were segmented with a custom deep-learning-based analysis pipeline. Retinal thickness and reflectivity values were extracted for the central and the four inner Early Treatment Diabetic Retinopathy Study (ETDRS) subfields for six retinal layers (inner retina, outer nuclear layer, inner segments [IS], outer segments [OS], retinal pigment epithelium-drusen complex [RPEDC] and the choroid). Machine-learning models were probed to predict the anti-VEGF treatment frequency within the next 12 months. Probabilistic forecasting was performed using natural gradient boosting (NGBoost), which outputs a full probability distribution. The mean absolute error (MAE) between the predicted versus actual anti-VEGF treatment frequency was the primary outcome measure.

RESULTS

In a total of 138 visits of 99 eyes with neovascular AMD (96 patients) from two clinical centers, the prediction of future anti-VEGF treatment frequency was observed with an accuracy (MAE [95% confidence interval]) of 2.60 injections/year [2.25-2.96] (R2 = 0.390) using random forest regression and 2.66 injections/year [2.31-3.01] (R2 = 0.094) using NGBoost, respectively. Prediction intervals were well calibrated and reflected the true uncertainty of NGBoost-based predictions. Standard deviation of RPEDC-thickness in the central ETDRS-subfield constituted an important predictor across models.

CONCLUSIONS

The proposed, fully automated pipeline enables probabilistic forecasting of future anti-VEGF treatment frequency in real-world settings.

TRANSLATIONAL RELEVANCE

Prediction of a probability distribution allows the physician to inspect the underlying uncertainty. Predictive uncertainty estimates are essential to highlight cases where human-inspection and/or reversion to a fallback alternative is warranted.

摘要

目的

利用基于深度学习的定制分析管道,从真实环境中通过体积谱域光相干断层扫描(SD-OCT)生物标志物,预测新生血管性年龄相关性黄斑变性(nAMD)患者所需抗血管内皮生长因子(anti-VEGF)治疗的频率。

方法

对 SD-OCT 容积扫描进行分割,采用定制的基于深度学习的分析管道。提取视网膜厚度和反射率值,包括中央和内早期治疗糖尿病性视网膜病变研究(ETDRS)子区的 6 个视网膜层(内层、外核层、内节[IS]、外节[OS]、视网膜色素上皮-脉络膜复合层[RPEDC]和脉络膜)。探索机器学习模型以预测未来 12 个月内的抗-VEGF 治疗频率。使用自然梯度增强(NGBoost)进行概率预测,它输出完整的概率分布。预测与实际抗-VEGF 治疗频率之间的平均绝对误差(MAE)是主要的评估指标。

结果

在来自两个临床中心的 99 只患有 nAMD 的眼 138 次就诊中(96 例患者),使用随机森林回归预测未来抗-VEGF 治疗频率的准确性(MAE [95%置信区间])分别为 2.60 次注射/年[2.25-2.96](R2 = 0.390)和 2.66 次注射/年[2.31-3.01](R2 = 0.094)使用 NGBoost。预测区间具有良好的校准性,并反映了 NGBoost 预测的真实不确定性。中央 ETDRS 子区的 RPEDC 厚度标准差是模型中的一个重要预测因子。

结论

提出的全自动流水线能够在真实环境中对未来抗-VEGF 治疗频率进行概率预测。

翻译

汪文琪

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7422/8254013/3e2a6fe55360/tvst-10-7-30-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验