文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于自适应深度神经网络的类风湿关节炎患者疾病活动度的个体化预测。

Personalized prediction of disease activity in patients with rheumatoid arthritis using an adaptive deep neural network.

机构信息

Department of Computer Science, University of Freiburg, Freiburg Im Breisgau, Germany.

Department of Rheumatology, University Hospital Basel, Basel, Switzerland.

出版信息

PLoS One. 2021 Jun 29;16(6):e0252289. doi: 10.1371/journal.pone.0252289. eCollection 2021.


DOI:10.1371/journal.pone.0252289
PMID:34185794
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8241074/
Abstract

BACKGROUND: Deep neural networks learn from former experiences on a large scale and can be used to predict future disease activity as potential clinical decision support. AdaptiveNet is a novel adaptive recurrent neural network optimized to deal with heterogeneous and missing clinical data. OBJECTIVE: We investigate AdaptiveNet for the prediction of individual disease activity in patients from a rheumatoid arthritis (RA) registry. METHODS: Demographic and disease characteristics from over 9500 patients and 65.000 visits from the Swiss Quality Management (SCQM) database were used to train and evaluate the network. Patient characteristics, clinical and patient reported outcomes, laboratory values and medication were used as input features. DAS28-BSR served as a target to predict active RA and future numeric individual disease activity by classification and regression. RESULTS: AdaptiveNet predicted active disease defined as DAS28-BSR >2.6 at the next visit with an overall accuracy of 75.6% (SD +- 0.7%) and a sensitivity and specificity of 84.2% (SD +- 1.6%) and 61.5% (SD +- 3.6%), respectively. Prediction performance was significantly higher in patients with a disease duration >3 years and positive rheumatoid factor. Regression allowed forecasting individual DAS28-BSR values with a mean squared error (MSE) of 0.9 (SD +- 0.05). This corresponds to a 8% deviation between estimated and real DAS28-BSR values. Compared to linear regression, random forest and support vector machines, AdaptiveNet showed an increased performance of over 7% in MSE. Medication played a minor role in the prediction of RA disease activity. CONCLUSION: AdaptiveNet has a superior capacity to predict numeric RA disease activity compared to classical machine learning architectures. All investigated models had limitations in low specificity.

摘要

背景:深度神经网络通过大规模的以往经验学习,可以用作潜在的临床决策支持来预测未来的疾病活动。AdaptiveNet 是一种新的自适应递归神经网络,经过优化可以处理异质和缺失的临床数据。

目的:我们研究了 AdaptiveNet 在预测瑞士质量管理 (SCQM) 数据库中类风湿关节炎 (RA) 登记患者的个体疾病活动中的应用。

方法:使用超过 9500 名患者和 65000 次就诊的人口统计学和疾病特征来训练和评估网络。患者特征、临床和患者报告的结局、实验室值和药物被用作输入特征。DAS28-BSR 用作预测下一次就诊时活动性 RA 和未来个体疾病活动的目标,通过分类和回归进行预测。

结果:AdaptiveNet 预测了下一次就诊时 DAS28-BSR>2.6 的活动性疾病,总体准确率为 75.6%(SD +- 0.7%),敏感性和特异性分别为 84.2%(SD +- 1.6%)和 61.5%(SD +- 3.6%)。疾病持续时间>3 年和类风湿因子阳性的患者预测性能显著更高。回归允许用均方误差 (MSE) 0.9(SD +- 0.05)预测个体 DAS28-BSR 值。这相当于估计和实际 DAS28-BSR 值之间的 8%偏差。与线性回归、随机森林和支持向量机相比,AdaptiveNet 在 MSE 方面的性能提高了 7%以上。药物在 RA 疾病活动的预测中作用较小。

结论:与经典机器学习架构相比,AdaptiveNet 具有更好的预测数值 RA 疾病活动的能力。所有研究的模型在特异性方面都存在局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/519c/8241074/fd5bda1ced9c/pone.0252289.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/519c/8241074/59c73bb795dd/pone.0252289.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/519c/8241074/ea2ae7daaba2/pone.0252289.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/519c/8241074/fd5bda1ced9c/pone.0252289.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/519c/8241074/59c73bb795dd/pone.0252289.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/519c/8241074/ea2ae7daaba2/pone.0252289.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/519c/8241074/fd5bda1ced9c/pone.0252289.g003.jpg

相似文献

[1]
Personalized prediction of disease activity in patients with rheumatoid arthritis using an adaptive deep neural network.

PLoS One. 2021

[2]
The longitudinal effect of biologic use on patient outcomes (disease activity, function, and disease severity) within a rheumatoid arthritis registry.

Clin Rheumatol. 2019-7-29

[3]
Rheumatoid Arthritis Disease Activity Predicting Incident Clinically Apparent Rheumatoid Arthritis-Associated Interstitial Lung Disease: A Prospective Cohort Study.

Arthritis Rheumatol. 2019-8-4

[4]
Merging Veterans Affairs rheumatoid arthritis registry and pharmacy data to assess methotrexate adherence and disease activity in clinical practice.

Arthritis Care Res (Hoboken). 2011-12

[5]
Is tightly controlled disease activity possible with online patient-reported outcomes?

J Rheumatol. 2014-4

[6]
Inclusion of Synovial Tissue-Derived Characteristics in a Nomogram for the Prediction of Treatment Response in Treatment-Naive Rheumatoid Arthritis Patients.

Arthritis Rheumatol. 2021-9

[7]
Medication persistence over 2 years of follow-up in a cohort of early rheumatoid arthritis patients: associated factors and relationship with disease activity and with disability.

Arthritis Res Ther. 2009

[8]
Gain in quality-adjusted life-years in patients with rheumatoid arthritis during 1 year of biological therapy: a prospective study in clinical practice.

J Rheumatol. 2013-7-1

[9]
Prediction of Real-World Drug Effectiveness Prelaunch: Case Study in Rheumatoid Arthritis.

Med Decis Making. 2018-8

[10]
Joint damage progression in patients with rheumatoid arthritis in clinical remission: do biologics perform better than synthetic antirheumatic drugs?

J Rheumatol. 2014-8

引用本文的文献

[1]
Current application, possibilities, and challenges of artificial intelligence in the management of rheumatoid arthritis, axial spondyloarthritis, and psoriatic arthritis.

Ther Adv Musculoskelet Dis. 2025-6-21

[2]
Using artificial intelligence to predict patient outcomes from patient-reported outcome measures: a scoping review.

Health Qual Life Outcomes. 2025-4-11

[3]
Sex bias consideration in healthcare machine-learning research: a systematic review in rheumatoid arthritis.

BMJ Open. 2025-3-13

[4]
Unveiling Artificial Intelligence's Power: Precision, Personalization, and Progress in Rheumatology.

J Clin Med. 2024-10-31

[5]
Investigating artificial intelligence models for predicting joint pain from serum biochemistry.

Rev Assoc Med Bras (1992). 2024

[6]
Explainable deep learning for disease activity prediction in chronic inflammatory joint diseases.

PLOS Digit Health. 2024-6-27

[7]
Advancing Rheumatology Care Through Machine Learning.

Pharmaceut Med. 2024-3

[8]
Digital transformation of an academic hospital department: A case study on strategic planning using the balanced scorecard.

PLOS Digit Health. 2023-11-17

[9]
Patient groups in Rheumatoid arthritis identified by deep learning respond differently to biologic or targeted synthetic DMARDs.

PLoS Comput Biol. 2023-6

[10]
The wide range of opportunities for large language models such as ChatGPT in rheumatology.

RMD Open. 2023-4

本文引用的文献

[1]
Machine learning prediction in cardiovascular diseases: a meta-analysis.

Sci Rep. 2020-9-29

[2]
Applied machine learning and artificial intelligence in rheumatology.

Rheumatol Adv Pract. 2020-2-19

[3]
Comparing different supervised machine learning algorithms for disease prediction.

BMC Med Inform Decis Mak. 2019-12-21

[4]
Is prediction of clinical response to methotrexate in individual rheumatoid arthritis patients possible? A systematic literature review.

Joint Bone Spine. 2020-1

[5]
Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis.

JAMA Netw Open. 2019-3-1

[6]
Detection of Flares by Decrease in Physical Activity, Collected Using Wearable Activity Trackers in Rheumatoid Arthritis or Axial Spondyloarthritis: An Application of Machine Learning Analyses in Rheumatology.

Arthritis Care Res (Hoboken). 2019-10

[7]
Overdiagnosis and overtreatment in rheumatology: a little caution is in order.

Ann Rheum Dis. 2018-7-4

[8]
Biological function integrated prediction of severe radiographic progression in rheumatoid arthritis: a nested case control study.

Arthritis Res Ther. 2017-10-25

[9]
EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update.

Ann Rheum Dis. 2017-3-6

[10]
Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions.

Ann Rheum Dis. 2016-6-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索