Department of Computer Science, University of Freiburg, Freiburg Im Breisgau, Germany.
Department of Rheumatology, University Hospital Basel, Basel, Switzerland.
PLoS One. 2021 Jun 29;16(6):e0252289. doi: 10.1371/journal.pone.0252289. eCollection 2021.
BACKGROUND: Deep neural networks learn from former experiences on a large scale and can be used to predict future disease activity as potential clinical decision support. AdaptiveNet is a novel adaptive recurrent neural network optimized to deal with heterogeneous and missing clinical data. OBJECTIVE: We investigate AdaptiveNet for the prediction of individual disease activity in patients from a rheumatoid arthritis (RA) registry. METHODS: Demographic and disease characteristics from over 9500 patients and 65.000 visits from the Swiss Quality Management (SCQM) database were used to train and evaluate the network. Patient characteristics, clinical and patient reported outcomes, laboratory values and medication were used as input features. DAS28-BSR served as a target to predict active RA and future numeric individual disease activity by classification and regression. RESULTS: AdaptiveNet predicted active disease defined as DAS28-BSR >2.6 at the next visit with an overall accuracy of 75.6% (SD +- 0.7%) and a sensitivity and specificity of 84.2% (SD +- 1.6%) and 61.5% (SD +- 3.6%), respectively. Prediction performance was significantly higher in patients with a disease duration >3 years and positive rheumatoid factor. Regression allowed forecasting individual DAS28-BSR values with a mean squared error (MSE) of 0.9 (SD +- 0.05). This corresponds to a 8% deviation between estimated and real DAS28-BSR values. Compared to linear regression, random forest and support vector machines, AdaptiveNet showed an increased performance of over 7% in MSE. Medication played a minor role in the prediction of RA disease activity. CONCLUSION: AdaptiveNet has a superior capacity to predict numeric RA disease activity compared to classical machine learning architectures. All investigated models had limitations in low specificity.
背景:深度神经网络通过大规模的以往经验学习,可以用作潜在的临床决策支持来预测未来的疾病活动。AdaptiveNet 是一种新的自适应递归神经网络,经过优化可以处理异质和缺失的临床数据。
目的:我们研究了 AdaptiveNet 在预测瑞士质量管理 (SCQM) 数据库中类风湿关节炎 (RA) 登记患者的个体疾病活动中的应用。
方法:使用超过 9500 名患者和 65000 次就诊的人口统计学和疾病特征来训练和评估网络。患者特征、临床和患者报告的结局、实验室值和药物被用作输入特征。DAS28-BSR 用作预测下一次就诊时活动性 RA 和未来个体疾病活动的目标,通过分类和回归进行预测。
结果:AdaptiveNet 预测了下一次就诊时 DAS28-BSR>2.6 的活动性疾病,总体准确率为 75.6%(SD +- 0.7%),敏感性和特异性分别为 84.2%(SD +- 1.6%)和 61.5%(SD +- 3.6%)。疾病持续时间>3 年和类风湿因子阳性的患者预测性能显著更高。回归允许用均方误差 (MSE) 0.9(SD +- 0.05)预测个体 DAS28-BSR 值。这相当于估计和实际 DAS28-BSR 值之间的 8%偏差。与线性回归、随机森林和支持向量机相比,AdaptiveNet 在 MSE 方面的性能提高了 7%以上。药物在 RA 疾病活动的预测中作用较小。
结论:与经典机器学习架构相比,AdaptiveNet 具有更好的预测数值 RA 疾病活动的能力。所有研究的模型在特异性方面都存在局限性。
Arthritis Care Res (Hoboken). 2011-12
Med Decis Making. 2018-8
Health Qual Life Outcomes. 2025-4-11
Rev Assoc Med Bras (1992). 2024
PLOS Digit Health. 2024-6-27
Pharmaceut Med. 2024-3
Sci Rep. 2020-9-29
Rheumatol Adv Pract. 2020-2-19
BMC Med Inform Decis Mak. 2019-12-21
Ann Rheum Dis. 2018-7-4