文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

研究用于从血清生物化学预测关节疼痛的人工智能模型。

Investigating artificial intelligence models for predicting joint pain from serum biochemistry.

机构信息

National University of Computer and Emerging Sciences, Foundation for the Advancement of Science and Technology, Department of Sciences and Humanities - Lahore, Pakistan.

The University of Lahore, University College of Medicine, Department of Orthopedic Surgery - Lahore, Pakistan.

出版信息

Rev Assoc Med Bras (1992). 2024 Sep 16;70(9):e20240381. doi: 10.1590/1806-9282.20240381. eCollection 2024.


DOI:10.1590/1806-9282.20240381
PMID:39292083
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11404989/
Abstract

OBJECTIVE: The study used machine learning models to predict the clinical outcome with various attributes or when the models chose features based on their algorithms. METHODS: Patients who presented to an orthopedic outpatient department with joint swelling or myalgia were included in the study. A proforma collected clinical information on age, gender, uric acid, C-reactive protein, and complete blood count/liver function test/renal function test parameters. Machine learning decision models (Random Forest and Gradient Boosted) were evaluated with the selected features/attributes. To categorize input data into outputs of indications of joint discomfort, multilayer perceptron and radial basis function-neural networks were used. RESULTS: The random forest decision model outperformed with 97% accuracy and minimum errors to anticipate joint pain from input attributes. For predicted classifications, the multilayer perceptron fared better with an accuracy of 98% as compared to the radial basis function. Multilayer perceptron achieved the following normalized relevance: 100% (uric acid), 10.3% (creatinine), 9.8% (AST), 5.4% (lymphocytes), and 5% (C-reactive protein) for having joint pain. Uric acid has the highest normalized relevance for predicting joint pain. CONCLUSION: The earliest artificial intelligence-based detection of joint pain will aid in the prevention of more serious orthopedic complications.

摘要

目的:本研究使用机器学习模型来预测具有不同属性的临床结果,或当模型根据其算法选择特征时。

方法:本研究纳入了因关节肿胀或肌痛就诊于骨科门诊的患者。通过表格收集了年龄、性别、尿酸、C 反应蛋白和全血细胞计数/肝功能试验/肾功能试验参数等临床信息。使用所选特征/属性评估了机器学习决策模型(随机森林和梯度提升)。为了将输入数据分类为关节不适的输出,使用了多层感知器和径向基函数神经网络。

结果:随机森林决策模型表现出色,准确率为 97%,错误率最低,可以根据输入属性预测关节疼痛。对于预测分类,多层感知器的准确率为 98%,优于径向基函数。多层感知器的归一化相关性如下:关节疼痛的尿酸为 100%(尿酸)、10.3%(肌酐)、9.8%(AST)、5.4%(淋巴细胞)和 5%(C 反应蛋白)。尿酸对预测关节疼痛具有最高的归一化相关性。

结论:基于人工智能的早期关节疼痛检测将有助于预防更严重的骨科并发症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e3/11404989/6672b216978e/1806-9282-ramb-70-09-e20240381-gf02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e3/11404989/768b196bed05/1806-9282-ramb-70-09-e20240381-gf01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e3/11404989/6672b216978e/1806-9282-ramb-70-09-e20240381-gf02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e3/11404989/768b196bed05/1806-9282-ramb-70-09-e20240381-gf01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51e3/11404989/6672b216978e/1806-9282-ramb-70-09-e20240381-gf02.jpg

相似文献

[1]
Investigating artificial intelligence models for predicting joint pain from serum biochemistry.

Rev Assoc Med Bras (1992). 2024

[2]
Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.

Comput Struct Biotechnol J. 2021

[3]
A Pilot Study Implementing a Machine Learning Algorithm to Use Artificial Intelligence to Diagnose Spinal Conditions.

Pain Physician. 2022-3

[4]
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?

Clin Orthop Relat Res. 2020-7

[5]
Artificial intelligence to predict bed bath time in Intensive Care Units.

Rev Bras Enferm. 2024

[6]
Prediction of postoperative recurrence of oral cancer by artificial intelligence model: Multilayer perceptron.

Head Neck. 2023-12

[7]
Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers.

Clin Cancer Res. 2019-4-11

[8]
Predicting polycystic ovary syndrome with machine learning algorithms from electronic health records.

Front Endocrinol (Lausanne). 2024

[9]
Assessment and prediction of restless leg syndrome (RLS) in patients with diabetes mellitus type II through artificial intelligence (AI).

Pak J Pharm Sci. 2020-9

[10]
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.

BMC Public Health. 2024-6-28

引用本文的文献

[1]
Community-acquired pneumonia identification from electronic health records in the absence of a gold standard: A Bayesian latent class analysis.

PLOS Digit Health. 2025-7-21

[2]
Improved bio-inspired with machine learning computing approach for thyroid prediction.

Sci Rep. 2025-7-2

本文引用的文献

[1]
A machine learning-based approach to decipher multi-etiology of knee osteoarthritis onset and deterioration.

Osteoarthr Cartil Open. 2021-1-6

[2]
A Pilot Study Implementing a Machine Learning Algorithm to Use Artificial Intelligence to Diagnose Spinal Conditions.

Pain Physician. 2022-3

[3]
Personalized prediction of disease activity in patients with rheumatoid arthritis using an adaptive deep neural network.

PLoS One. 2021

[4]
Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning.

Sci Rep. 2020-5-15

[5]
Applied machine learning and artificial intelligence in rheumatology.

Rheumatol Adv Pract. 2020-2-19

[6]
Prediction model of artificial neural network for the risk of hyperuricemia incorporating dietary risk factors in a Chinese adult study.

Food Nutr Res. 2020-1-20

[7]
Pain and pain mechanisms in patients with inflammatory arthritis: A Danish nationwide cross-sectional DANBIO registry survey.

PLoS One. 2017-7-7

[8]
Prediction of medial tibiofemoral compartment joint space loss progression using volumetric cartilage measurements: Data from the FNIH OA biomarkers consortium.

Eur Radiol. 2016-5-24

[9]
Acute monoarthritis: what is the cause of my patient's painful swollen joint?

CMAJ. 2009-1-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索