Trottet Cécile, Allam Ahmed, Horvath Aron N, Finckh Axel, Hügle Thomas, Adler Sabine, Kyburz Diego, Micheroli Raphael, Krauthammer Michael, Ospelt Caroline
Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
Division of Rheumatology, Department of Medicine, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.
PLOS Digit Health. 2024 Jun 27;3(6):e0000422. doi: 10.1371/journal.pdig.0000422. eCollection 2024 Jun.
Analysing complex diseases such as chronic inflammatory joint diseases (CIJDs), where many factors influence the disease evolution over time, is a challenging task. CIJDs are rheumatic diseases that cause the immune system to attack healthy organs, mainly the joints. Different environmental, genetic and demographic factors affect disease development and progression. The Swiss Clinical Quality Management in Rheumatic Diseases (SCQM) Foundation maintains a national database of CIJDs documenting the disease management over time for 19'267 patients. We propose the Disease Activity Score Network (DAS-Net), an explainable multi-task learning model trained on patients' data with different arthritis subtypes, transforming longitudinal patient journeys into comparable representations and predicting multiple disease activity scores. First, we built a modular model composed of feed-forward neural networks, long short-term memory networks and attention layers to process the heterogeneous patient histories and predict future disease activity. Second, we investigated the utility of the model's computed patient representations (latent embeddings) to identify patients with similar disease progression. Third, we enhanced the explainability of our model by analysing the impact of different patient characteristics on disease progression and contrasted our model outcomes with medical expert knowledge. To this end, we explored multiple feature attribution methods including SHAP, attention attribution and feature weighting using case-based similarity. Our model outperforms temporal and non-temporal neural network, tree-based, and naive static baselines in predicting future disease activity scores. To identify similar patients, a k-nearest neighbours regression algorithm applied to the model's computed latent representations outperforms baseline strategies that use raw input features representation.
分析诸如慢性炎症性关节疾病(CIJD)这类复杂疾病是一项具有挑战性的任务,因为在这类疾病中,许多因素会随着时间影响疾病的发展。CIJD是一种风湿性疾病,会导致免疫系统攻击健康器官,主要是关节。不同的环境、遗传和人口统计学因素会影响疾病的发展和进程。瑞士风湿性疾病临床质量管理(SCQM)基金会维护了一个CIJD全国数据库,记录了19267名患者随时间的疾病管理情况。我们提出了疾病活动评分网络(DAS-Net),这是一种可解释的多任务学习模型,它基于不同关节炎亚型患者的数据进行训练,将患者的纵向病程转化为可比较的表示形式,并预测多个疾病活动评分。首先,我们构建了一个由前馈神经网络、长短期记忆网络和注意力层组成的模块化模型,以处理异构的患者病史并预测未来的疾病活动。其次,我们研究了模型计算出的患者表示(潜在嵌入)在识别具有相似疾病进展的患者方面的效用。第三,我们通过分析不同患者特征对疾病进展的影响来增强模型的可解释性,并将我们的模型结果与医学专家知识进行对比。为此,我们探索了多种特征归因方法,包括SHAP、注意力归因和基于案例相似度的特征加权。在预测未来疾病活动评分方面,我们的模型优于时间和非时间神经网络、基于树的模型以及简单的静态基线模型。为了识别相似患者,应用于模型计算出的潜在表示的k近邻回归算法优于使用原始输入特征表示的基线策略。
PLOS Digit Health. 2024-6-27
Digit Health. 2024-1-17
Comput Methods Programs Biomed. 2023-6
Comput Methods Programs Biomed. 2022-10
BMC Bioinformatics. 2022-6-17
Rheumatology (Oxford). 2022-12-23
Rheumatol Adv Pract. 2021-11-13
Nat Rev Rheumatol. 2021-12
Brief Bioinform. 2021-1-18
Arthritis Rheumatol. 2020-2-12
Yearb Med Inform. 2019-8