Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27606, USA.
Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27606, USA; Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, USA.
Cell Chem Biol. 2021 Dec 16;28(12):1772-1779.e4. doi: 10.1016/j.chembiol.2021.05.022. Epub 2021 Jun 28.
Histone proteins are decorated with a combinatorially and numerically diverse set of biochemical modifications. Here, we describe a versatile and scalable approach which enables efficient characterization of histone modifications without the need for recombinant protein production. As proof-of-concept, we first use this system to rapidly profile the histone H3 and H4 residue writing specificities of the human histone acetyltransferase, p300. Subsequently, a large panel of commercially available anti-acetylation antibodies are screened for their specificities, identifying many suitable and unsuitable reagents. Furthermore, this approach enables efficient mapping of the large binary crosstalk space between acetylated residues on histones H3 and H4 and uncovers residue interdependencies affecting p300 activity. These results show that using yeast surface display to study histone modifications is a useful tool that can advance our understanding of chromatin biology by enabling efficient interrogation of the complexity of epigenome modifications.
组蛋白蛋白通过组合和数量多样化的生化修饰来进行修饰。在这里,我们描述了一种通用且可扩展的方法,该方法可在无需重组蛋白生产的情况下,有效地对组蛋白修饰进行特征分析。作为概念验证,我们首先使用该系统快速分析了人类组蛋白乙酰转移酶 p300 对组蛋白 H3 和 H4 残基的特异性。随后,筛选了大量市售的抗乙酰化抗体,以确定其特异性,从而确定了许多合适和不合适的试剂。此外,该方法还可以有效地绘制组蛋白 H3 和 H4 上乙酰化残基之间的大二元相互作用空间图谱,并揭示影响 p300 活性的残基相互依存关系。这些结果表明,使用酵母表面展示来研究组蛋白修饰是一种有用的工具,它可以通过有效地探究表观基因组修饰的复杂性,来促进我们对染色质生物学的理解。