Suppr超能文献

人工智能预测癌症患者 30 天死亡率。

Augmented intelligence to predict 30-day mortality in patients with cancer.

机构信息

Cardinal Health Specialty Solutions, Dublin, OH 43017, USA.

Jvion, Inc., Suwanee, GA 30024, USA.

出版信息

Future Oncol. 2021 Oct;17(29):3797-3807. doi: 10.2217/fon-2021-0302. Epub 2021 Jun 30.

Abstract

An augmented intelligence tool to predict short-term mortality risk among patients with cancer could help identify those in need of actionable interventions or palliative care services. An algorithm to predict 30-day mortality risk was developed using socioeconomic and clinical data from patients in a large community hematology/oncology practice. Patients were scored weekly; algorithm performance was assessed using dates of death in patients' electronic health records. For patients scored as highest risk for 30-day mortality, the event rate was 4.9% (vs 0.7% in patients scored as low risk; a 7.4-times greater risk). The development and validation of a decision tool to accurately identify patients with cancer who are at risk for short-term mortality is feasible.

摘要

一种用于预测癌症患者短期死亡风险的增强型人工智能工具,可以帮助识别那些需要采取行动的干预措施或姑息治疗服务的患者。该算法使用来自大型社区血液学/肿瘤学实践中的患者的社会经济和临床数据来预测 30 天死亡率。患者每周进行评分;通过患者电子健康记录中的死亡日期来评估算法性能。对于评分最高的 30 天死亡率的患者,事件发生率为 4.9%(而评分最低的患者为 0.7%;风险高 7.4 倍)。开发和验证一种决策工具来准确识别有短期死亡风险的癌症患者是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验