Bertsimas Dimitris, Dunn Jack, Pawlowski Colin, Silberholz John, Weinstein Alexander, Zhuo Ying Daisy, Chen Eddy, Elfiky Aymen A
Dimitris Bertsimas, Jack Dunn, Colin Pawlowski, John Silberholz, Alexander Weinstein, and Ying Daisy Zhuo, Massachusetts Institute of Technology, Cambridge; Eddy Chen, Massachusetts General Hospital Cancer Center; Harvard Medical School; Aymen A. Elfiky, Dana-Farber Cancer Institute; Brigham and Women's Hospital; Harvard Medical School, Boston, MA.
JCO Clin Cancer Inform. 2018 Dec;2:1-11. doi: 10.1200/CCI.18.00003.
With rapidly evolving treatment options in cancer, the complexity in the clinical decision-making process for oncologists represents a growing challenge magnified by oncologists' disposition of intuition-based assessment of treatment risks and overall mortality. Given the unmet need for accurate prognostication with meaningful clinical rationale, we developed a highly interpretable prediction tool to identify patients with high mortality risk before the start of treatment regimens.
We obtained electronic health record data between 2004 and 2014 from a large national cancer center and extracted 401 predictors, including demographics, diagnosis, gene mutations, treatment history, comorbidities, resource utilization, vital signs, and laboratory test results. We built an actionable tool using novel developments in modern machine learning to predict 60-, 90- and 180-day mortality from the start of an anticancer regimen. The model was validated in unseen data against benchmark models.
We identified 23,983 patients who initiated 46,646 anticancer treatment lines, with a median survival of 514 days. Our proposed prediction models achieved significantly higher estimation quality in unseen data (area under the curve, 0.83 to 0.86) compared with benchmark models. We identified key predictors of mortality, such as change in weight and albumin levels. The results are presented in an interactive and interpretable tool ( www.oncomortality.com ).
Our fully transparent prediction model was able to distinguish with high precision between highest- and lowest-risk patients. Given the rich data available in electronic health records and advances in machine learning methods, this tool can have significant implications for value-based shared decision making at the point of care and personalized goals-of-care management to catalyze practice reforms.
随着癌症治疗方案的迅速发展,肿瘤学家临床决策过程的复杂性构成了一项日益严峻的挑战,而肿瘤学家基于直觉评估治疗风险和总体死亡率的倾向又进一步加剧了这一挑战。鉴于对具有有意义临床依据的准确预后存在未满足的需求,我们开发了一种高度可解释的预测工具,以在治疗方案开始前识别高死亡风险患者。
我们从一家大型国家癌症中心获取了2004年至2014年的电子健康记录数据,并提取了401个预测指标,包括人口统计学、诊断、基因突变、治疗史、合并症、资源利用、生命体征和实验室检查结果。我们利用现代机器学习的新进展构建了一个可操作的工具,以预测抗癌方案开始后60天、90天和180天的死亡率。该模型在未见过的数据中与基准模型进行了验证。
我们确定了23983名启动了46646条抗癌治疗线路的患者,中位生存期为514天。与基准模型相比,我们提出的预测模型在未见过的数据中实现了显著更高的估计质量(曲线下面积,0.83至0.86)。我们确定了死亡率的关键预测指标,如体重和白蛋白水平的变化。结果在一个交互式且可解释的工具(www.oncomortality.com)中呈现。
我们完全透明的预测模型能够高精度地区分最高风险和最低风险患者。鉴于电子健康记录中可用的丰富数据以及机器学习方法的进步,该工具对于基于价值的共享决策在医疗点的应用以及个性化的护理目标管理以推动实践改革可能具有重大意义。