Börgers Christoph, Kopell Nancy
Department of Mathematics, Tufts University, Medford, MA 02155, USA.
Neural Comput. 2005 Mar;17(3):557-608. doi: 10.1162/0899766053019908.
Synchronous rhythmic spiking in neuronal networks can be brought about by the interaction between E-cells and Icells (excitatory and inhibitory cells). The I-cells gate and synchronize the E-cells, and the E-cells drive and synchronize the I-cells. We refer to rhythms generated in this way as PING (pyramidal-interneuronal gamma) rhythms. The PING mechanism requires that the drive I(I) to the I-cells be sufficiently low; the rhythm is lost when I(I) gets too large. This can happen in at least two ways. In the first mechanism, the I-cells spike in synchrony, but get ahead of the E-cells, spiking without being prompted by the E-cells. We call this phase walkthrough of the I-cells. In the second mechanism, the I-cells fail to synchronize, and their activity leads to complete suppression of the E-cells. Noisy spiking in the E-cells, generated by noisy external drive, adds excitatory drive to the I-cells and may lead to phase walkthrough. Noisy spiking in the I-cells adds inhibition to the E-cells and may lead to suppression of the E-cells. An analysis of the conditions under which noise leads to phase walkthrough of the I-cells or suppression of the E-cells shows that PING rhythms at frequencies far below the gamma range are robust to noise only if network parameter values are tuned very carefully. Together with an argument explaining why the PING mechanism does not work far above the gamma range in the presence of heterogeneity, this justifies the "G" in "PING."
神经元网络中的同步节律性放电可由E细胞和I细胞(兴奋性和抑制性细胞)之间的相互作用产生。I细胞控制并同步E细胞,而E细胞驱动并同步I细胞。我们将以这种方式产生的节律称为PING(锥体-中间神经元γ)节律。PING机制要求对I细胞的驱动I(I)足够低;当I(I)变得太大时,节律就会消失。这至少可以通过两种方式发生。在第一种机制中,I细胞同步放电,但领先于E细胞,在没有E细胞激发的情况下放电。我们将此称为I细胞的相位穿越。在第二种机制中,I细胞未能同步,它们的活动导致E细胞完全被抑制。由外部噪声驱动产生的E细胞中的噪声性放电会向I细胞添加兴奋性驱动,并可能导致相位穿越。I细胞中的噪声性放电会向E细胞添加抑制作用,并可能导致E细胞被抑制。对噪声导致I细胞相位穿越或E细胞抑制的条件进行分析表明,只有当网络参数值经过非常仔细的调整时,远低于γ范围频率的PING节律才对噪声具有鲁棒性。再加上一个解释为什么在存在异质性的情况下PING机制在远高于γ范围时不起作用的论点,这就证明了“PING”中的“G”是合理的。