Suppr超能文献

3D细胞培养和3D生物打印平台的设计方法。

Design approaches for 3D cell culture and 3D bioprinting platforms.

作者信息

Sreepadmanabh M, Arun Ashitha B, Bhattacharjee Tapomoy

机构信息

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India.

出版信息

Biophys Rev (Melville). 2024 May 16;5(2):021304. doi: 10.1063/5.0188268. eCollection 2024 Jun.

Abstract

The natural habitat of most cells consists of complex and disordered 3D microenvironments with spatiotemporally dynamic material properties. However, prevalent methods of culture study cells under poorly biomimetic 2D confinement or homogeneous conditions that often neglect critical topographical cues and mechanical stimuli. It has also become increasingly apparent that cells in a 3D conformation exhibit dramatically altered morphological and phenotypical states. In response, efforts toward designing biomaterial platforms for 3D cell culture have taken centerstage over the past few decades. Herein, we present a broad overview of biomaterials for 3D cell culture and 3D bioprinting, spanning both monolithic and granular systems. We first critically evaluate conventional monolithic hydrogel networks, with an emphasis on specific experimental requirements. Building on this, we document the recent emergence of microgel-based 3D growth media as a promising biomaterial platform enabling interrogation of cells within porous and granular scaffolds. We also explore how jammed microgel systems have been leveraged to spatially design and manipulate cellular structures using 3D bioprinting. The advent of these techniques heralds an unprecedented ability to experimentally model complex physiological niches, with important implications for tissue bioengineering and biomedical applications.

摘要

大多数细胞的自然栖息地由具有时空动态物质特性的复杂且无序的三维微环境组成。然而,普遍的培养方法是在生物模拟性较差的二维限制条件或均匀条件下研究细胞,这些条件常常忽略了关键的地形线索和机械刺激。越来越明显的是,处于三维构象的细胞表现出显著改变的形态和表型状态。作为回应,在过去几十年里,致力于设计用于三维细胞培养的生物材料平台已成为核心任务。在此,我们对用于三维细胞培养和三维生物打印的生物材料进行广泛概述,涵盖整体式和颗粒系统。我们首先严格评估传统的整体式水凝胶网络,重点关注特定的实验要求。在此基础上,我们记录了基于微凝胶的三维生长培养基作为一种有前景的生物材料平台的最新出现,它能够在多孔和颗粒支架内对细胞进行研究。我们还探讨了如何利用微凝胶堵塞系统通过三维生物打印在空间上设计和操纵细胞结构。这些技术的出现预示着在实验上模拟复杂生理微环境的前所未有的能力,对组织生物工程和生物医学应用具有重要意义。

相似文献

1
Design approaches for 3D cell culture and 3D bioprinting platforms.3D细胞培养和3D生物打印平台的设计方法。
Biophys Rev (Melville). 2024 May 16;5(2):021304. doi: 10.1063/5.0188268. eCollection 2024 Jun.
3
5
3D bioprinting of hydrogel-based biomimetic microenvironments.基于水凝胶的仿生微环境的 3D 生物打印。
J Biomed Mater Res B Appl Biomater. 2019 Jul;107(5):1695-1705. doi: 10.1002/jbm.b.34262. Epub 2018 Dec 3.
8
Screening of perfused combinatorial 3D microenvironments for cell culture.用于细胞培养的灌注组合 3D 微环境筛选。
Acta Biomater. 2019 Sep 15;96:222-236. doi: 10.1016/j.actbio.2019.06.047. Epub 2019 Jun 27.

本文引用的文献

4
Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections.用于骨科感染的抗菌和可生物降解的 3D 打印支架
ACS Biomater Sci Eng. 2023 Jul 10;9(7):4020-4044. doi: 10.1021/acsbiomaterials.3c00115. Epub 2023 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验