Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
Sci Adv. 2021 Jun 30;7(27). doi: 10.1126/sciadv.abh3805. Print 2021 Jun.
Because of its small size (70 kilodalton) and large content of structural disorder (>50%), the human growth hormone receptor (hGHR) falls between the cracks of conventional high-resolution structural biology methods. Here, we study the structure of the full-length hGHR in nanodiscs with small-angle x-ray scattering (SAXS) as the foundation. We develop an approach that combines SAXS, x-ray diffraction, and NMR spectroscopy data obtained on individual domains and integrate these through molecular dynamics simulations to interpret SAXS data on the full-length hGHR in nanodiscs. The hGHR domains reorient freely, resulting in a broad structural ensemble, emphasizing the need to take an ensemble view on signaling of relevance to disease states. The structure provides the first experimental model of any full-length cytokine receptor in a lipid membrane and exemplifies how integrating experimental data from several techniques computationally may access structures of membrane proteins with long, disordered regions, a widespread phenomenon in biology.
由于其体积小(70 千道尔顿)和结构无序含量高(>50%),人类生长激素受体(hGHR)介于传统高分辨率结构生物学方法的缝隙之间。在这里,我们使用小角度 X 射线散射(SAXS)作为基础,研究纳米盘中的全长 hGHR 结构。我们开发了一种方法,将在各个结构域上获得的 SAXS、X 射线衍射和 NMR 光谱数据结合起来,并通过分子动力学模拟进行整合,以解释纳米盘中全长 hGHR 的 SAXS 数据。hGHR 结构域可以自由旋转,产生了广泛的结构整体,这强调了需要对与疾病状态相关的信号转导采取整体观点。该结构提供了第一个在脂质膜中的全长细胞因子受体的实验模型,并说明了如何通过计算整合来自多种技术的实验数据,可以获得具有长无序区域的膜蛋白结构,这是生物学中的普遍现象。