Suppr超能文献

基于随机森林-奇异值分解模型的马来西亚新冠肺炎每日确诊病例短期预测

Short-Term Forecasting of Daily Confirmed COVID-19 Cases in Malaysia Using RF-SSA Model.

作者信息

Shaharudin Shazlyn Milleana, Ismail Shuhaida, Hassan Noor Artika, Tan Mou Leong, Sulaiman Nurul Ainina Filza

机构信息

Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia.

Data Analytics, Sciences & Modelling (DASM), Department of Mathematics & Statistics, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia.

出版信息

Front Public Health. 2021 Jun 14;9:604093. doi: 10.3389/fpubh.2021.604093. eCollection 2021.

Abstract

Novel coronavirus (COVID-19) was discovered in Wuhan, China in December 2019, and has affected millions of lives worldwide. On 29th April 2020, Malaysia reported more than 5,000 COVID-19 cases; the second highest in the Southeast Asian region after Singapore. Recently, a forecasting model was developed to measure and predict COVID-19 cases in Malaysia on daily basis for the next 10 days using previously-confirmed cases. A Recurrent Forecasting-Singular Spectrum Analysis (RF-SSA) is proposed by establishing L and parameters via several tests. The advantage of using this forecasting model is it would discriminate noise in a time series trend and produce significant forecasting results. The RF-SSA model assessment was based on the official COVID-19 data released by the World Health Organization (WHO) to predict daily confirmed cases between 30th April and 31st May, 2020. These results revealed that parameter = 5 (T/20) for the RF-SSA model was indeed suitable for short-time series outbreak data, while the appropriate number of eigentriples was integral as it influenced the forecasting results. Evidently, the RF-SSA had over-forecasted the cases by 0.36%. This signifies the competence of RF-SSA in predicting the impending number of COVID-19 cases. Nonetheless, an enhanced RF-SSA algorithm should be developed for higher effectivity of capturing any extreme data changes.

摘要

新型冠状病毒(COVID-19)于2019年12月在中国武汉被发现,并已影响全球数百万人的生命。2020年4月29日,马来西亚报告了超过5000例COVID-19病例;仅次于新加坡,是东南亚地区第二高的。最近,开发了一种预测模型,利用先前确诊的病例来每日测量和预测马来西亚未来10天的COVID-19病例。通过多次测试建立L和参数,提出了一种递归预测-奇异谱分析(RF-SSA)方法。使用这种预测模型的优点是它能在时间序列趋势中区分噪声并产生显著的预测结果。RF-SSA模型评估基于世界卫生组织(WHO)发布的官方COVID-19数据,以预测2020年4月30日至5月31日的每日确诊病例。这些结果表明,RF-SSA模型的参数 = 5(T/20)确实适用于短期序列爆发数据,而适当数量的特征三元组至关重要,因为它会影响预测结果。显然,RF-SSA对病例的预测高估了0.36%。这表明RF-SSA在预测即将出现的COVID-19病例数量方面的能力。尽管如此,应该开发一种增强的RF-SSA算法,以提高捕捉任何极端数据变化的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c88d/8236644/73fbef7dba9b/fpubh-09-604093-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验