Suppr超能文献

一种工程化的纤维二糖水解酶 I 可实现木质纤维素生物质的可持续降解。

An engineered cellobiohydrolase I for sustainable degradation of lignocellulosic biomass.

机构信息

Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.

Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia.

出版信息

Biotechnol Bioeng. 2021 Oct;118(10):4014-4027. doi: 10.1002/bit.27877. Epub 2021 Jul 12.

Abstract

This study provides computational-assisted engineering of the cellobiohydrolase I (CBH-I) from Penicillium verruculosum with simultaneous enhanced thermostability and tolerance in ionic liquids, deep eutectic solvent, and concentrated seawater without affecting its wild-type activity. Engineered triple variant CBH-I R1 (A65R-G415R-S181F) showed 2.48-fold higher thermostability in terms of relative activity at 65°C after 1 h of incubation when compared with CBH-I wild type. CBH-I R1 exhibited 1.87-fold, 1.36-fold, and 1.57-fold higher specific activities compared with CBH-I wild type in [Bmim]Cl (50 g/L), [Ch]Cl (50 g/L), and two-fold concentrated seawater, respectively. In the multicellulases mixture, CBH-I R1 showed higher hydrolytic efficiency to hydrolyze aspen wood compared with CBH-I wild type in the buffer, [Bmim]Cl (50 g/L), and two-fold concentrated seawater, respectively. Structural analysis revealed a molecular basis for the higher stability of the CBH-I structure in which A65R and G415R substitutions form salt bridges (D64 … R65, E411 … R415) and S181F forms π-π interaction (Y155 … F181), leading to stabilize surface-exposed flexible α-helixes and loop in the multidomain β-jelly roll fold structure, respectively. In conclusion, the variant CBH-I R1 could enable efficient lignocellulosic biomass degradation as a cost-effective alternative for the sustainable production of biofuels and value-added chemicals.

摘要

本研究通过对里氏木霉纤维二糖水解酶 I(CBH-I)进行计算辅助工程改造,在不影响其野生型活性的情况下,同时提高其在离子液体、深共熔溶剂和浓缩海水中的耐热性和耐受性。工程化的三重变体 CBH-I R1(A65R-G415R-S181F)在孵育 1 小时后,在 65°C 时的相对活性方面表现出 2.48 倍的热稳定性提高。与野生型 CBH-I 相比,CBH-I R1 在 [Bmim]Cl(50 g/L)、[Ch]Cl(50 g/L)和两倍浓缩海水中的比活性分别提高了 1.87 倍、1.36 倍和 1.57 倍。在多酶混合物中,与野生型 CBH-I 相比,CBH-I R1 在缓冲液、[Bmim]Cl(50 g/L)和两倍浓缩海水中对杨木的水解效率更高。结构分析揭示了 CBH-I 结构更高稳定性的分子基础,其中 A65R 和 G415R 取代形成盐桥(D64…R65、E411…R415),S181F 形成 π-π 相互作用(Y155…F181),分别稳定多结构域 β-果冻卷折叠结构中表面暴露的柔性α-螺旋和环。总之,变体 CBH-I R1 可以作为可持续生产生物燃料和增值化学品的经济有效的替代物,实现高效的木质纤维素生物质降解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验