Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia.
Biotechnol Bioeng. 2021 Oct;118(10):4014-4027. doi: 10.1002/bit.27877. Epub 2021 Jul 12.
This study provides computational-assisted engineering of the cellobiohydrolase I (CBH-I) from Penicillium verruculosum with simultaneous enhanced thermostability and tolerance in ionic liquids, deep eutectic solvent, and concentrated seawater without affecting its wild-type activity. Engineered triple variant CBH-I R1 (A65R-G415R-S181F) showed 2.48-fold higher thermostability in terms of relative activity at 65°C after 1 h of incubation when compared with CBH-I wild type. CBH-I R1 exhibited 1.87-fold, 1.36-fold, and 1.57-fold higher specific activities compared with CBH-I wild type in [Bmim]Cl (50 g/L), [Ch]Cl (50 g/L), and two-fold concentrated seawater, respectively. In the multicellulases mixture, CBH-I R1 showed higher hydrolytic efficiency to hydrolyze aspen wood compared with CBH-I wild type in the buffer, [Bmim]Cl (50 g/L), and two-fold concentrated seawater, respectively. Structural analysis revealed a molecular basis for the higher stability of the CBH-I structure in which A65R and G415R substitutions form salt bridges (D64 … R65, E411 … R415) and S181F forms π-π interaction (Y155 … F181), leading to stabilize surface-exposed flexible α-helixes and loop in the multidomain β-jelly roll fold structure, respectively. In conclusion, the variant CBH-I R1 could enable efficient lignocellulosic biomass degradation as a cost-effective alternative for the sustainable production of biofuels and value-added chemicals.
本研究通过对里氏木霉纤维二糖水解酶 I(CBH-I)进行计算辅助工程改造,在不影响其野生型活性的情况下,同时提高其在离子液体、深共熔溶剂和浓缩海水中的耐热性和耐受性。工程化的三重变体 CBH-I R1(A65R-G415R-S181F)在孵育 1 小时后,在 65°C 时的相对活性方面表现出 2.48 倍的热稳定性提高。与野生型 CBH-I 相比,CBH-I R1 在 [Bmim]Cl(50 g/L)、[Ch]Cl(50 g/L)和两倍浓缩海水中的比活性分别提高了 1.87 倍、1.36 倍和 1.57 倍。在多酶混合物中,与野生型 CBH-I 相比,CBH-I R1 在缓冲液、[Bmim]Cl(50 g/L)和两倍浓缩海水中对杨木的水解效率更高。结构分析揭示了 CBH-I 结构更高稳定性的分子基础,其中 A65R 和 G415R 取代形成盐桥(D64…R65、E411…R415),S181F 形成 π-π 相互作用(Y155…F181),分别稳定多结构域 β-果冻卷折叠结构中表面暴露的柔性α-螺旋和环。总之,变体 CBH-I R1 可以作为可持续生产生物燃料和增值化学品的经济有效的替代物,实现高效的木质纤维素生物质降解。