Kumar Atul, Illig Alexander-Maurice, de la Vega Guerra Nicolas, Contreras Francisca, Davari Mehdi D, Schwaneberg Ulrich
Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3 52074 Aachen Germany
Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3 06120 Halle Germany.
RSC Chem Biol. 2025 May 5. doi: 10.1039/d5cb00013k.
Enhancing the performance of cellulases at high temperatures is crucial for efficient biomass hydrolysis-a fundamental process in biorefineries. Traditional protein engineering methods, while effective, are time-consuming and labour-intensive, limiting rapid advancements. To streamline the engineering process, we tested two distinct methods for predicting thermally resistant and highly active variants of endoglucanase II. Specifically, we used FoldX to pinpoint structure-stabilizing substitutions (ΔΔ < 0) and applied the sequence-based method EVmutation to identify evolutionarily favorable substitutions (Δ > 0). Experimental validation of the top 20 ranked single-substituted variants from both methods showed that EVmutation outperformed FoldX, identifying variants with enhanced enzyme activity after one-hour incubation at 75 °C (up to 3.6-fold increase), increased melting temperature (Δ of 2.8 °C), and longer half-lives at 75 °C (up to 104 minutes 40 minutes for the wild type). Building upon these results, EVmutation was used to predict variants with two amino acid substitutions. These double-substituted endoglucanase variants showed further improvements-up to a 4.4-fold increase in activity, Δ gains of 3.7 °C, and half-life extensions up to 82 minutes. This study highlights EVmutation's potential for accelerating protein engineering campaigns and enhancing enzyme properties while reducing experimental efforts, thereby contributing to more efficient and sustainable bioprocesses.
提高纤维素酶在高温下的性能对于生物质高效水解至关重要,而生物质水解是生物精炼厂的一个基本过程。传统的蛋白质工程方法虽然有效,但耗时且费力,限制了快速进展。为了简化工程过程,我们测试了两种不同的方法来预测内切葡聚糖酶II的耐热且高活性变体。具体而言,我们使用FoldX来确定稳定结构的取代(ΔΔG < 0),并应用基于序列的方法EVmutation来识别进化上有利的取代(Δ > 0)。对两种方法排名前20的单取代变体进行实验验证表明,EVmutation优于FoldX,它所识别的变体在75°C孵育1小时后酶活性增强(提高了3.6倍),解链温度升高(ΔTm为2.8°C),在75°C下的半衰期延长(野生型为40分钟,最长可达104分钟)。基于这些结果,EVmutation被用于预测具有两个氨基酸取代的变体。这些双取代内切葡聚糖酶变体表现出进一步的改进——活性提高了4.4倍,ΔTm增加了3.7°C,半衰期延长至82分钟。本研究突出了EVmutation在加速蛋白质工程研究、增强酶特性同时减少实验工作量方面的潜力,从而有助于实现更高效和可持续的生物过程。