Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Present address: Sanofi, Waltham, MA 02451, USA.
Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
J Mol Biol. 2021 Sep 3;433(18):167120. doi: 10.1016/j.jmb.2021.167120. Epub 2021 Jun 29.
Proteins that exhibit intrinsically disordered regions (IDRs) are prevalent in the human proteome and perform diverse biological functions, including signaling and regulation. Due to these important roles, misregulation of intrinsically disordered proteins (IDPs) is associated with myriad human diseases, including neurodegeneration and cancer. The inherent flexibility of IDPs limits the applicability of the traditional structure-based drug design paradigm; therefore, IDPs have long been considered "undruggable". Using NMR spectroscopy and other methods, we previously discovered small, drug-like molecules that bind specifically, albeit weakly, to dynamic clusters of aromatic residues within p27 (p27), an archetypal disordered protein involved in cell cycle regulation. Here, using synthetic chemistry, NMR spectroscopy and other biophysical methods, we discovered elaborated analogs of our previously reported molecules with 30-fold increased affinity for p27 (apparent K = 57 ± 19 μM). Strikingly, using analytical ultracentrifugation methods, we showed that the highest affinity compounds caused p27 to form soluble, disordered oligomers. Based on these observations, we propose that sequestration within soluble oligomers may represent a general strategy for therapeutically targeting disease-associated IDPs in the future.
具有无规则区域(IDR)的蛋白质在人类蛋白质组中很常见,它们具有多种生物学功能,包括信号转导和调节。由于这些重要的作用,内在无序蛋白质(IDP)的失调与许多人类疾病有关,包括神经退行性疾病和癌症。IDP 的固有灵活性限制了传统基于结构的药物设计范例的适用性;因此,IDP 长期以来一直被认为是“不可成药”的。我们之前使用 NMR 光谱学和其他方法发现了一些小的、类似药物的分子,这些分子可以特异性地结合到 p27(p27)中芳香族残基的动态簇中,尽管结合较弱,p27 是一种参与细胞周期调节的典型无序蛋白质。在这里,我们使用合成化学、NMR 光谱学和其他生物物理方法,发现了我们之前报道的分子的精心设计的类似物,对 p27 的亲和力提高了 30 倍(表观 K = 57 ± 19 μM)。引人注目的是,我们使用分析超速离心方法表明,最高亲和力的化合物导致 p27 形成可溶的无序寡聚物。基于这些观察结果,我们提出将其隔离在可溶性寡聚体中可能代表未来治疗与疾病相关的 IDP 的一种通用策略。