Suppr超能文献

机器学习模型预测 COVID-19 住院患者院内死亡率:亚组人群中的低估和高估偏差分析。

Machine Learning Models to Predict In-Hospital Mortality among Inpatients with COVID-19: Underestimation and Overestimation Bias Analysis in Subgroup Populations.

机构信息

Department of Health Information Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

出版信息

J Healthc Eng. 2022 Jun 23;2022:1644910. doi: 10.1155/2022/1644910. eCollection 2022.

Abstract

Prediction of the death among COVID-19 patients can help healthcare providers manage the patients better. We aimed to develop machine learning models to predict in-hospital death among these patients. We developed different models using different feature sets and datasets developed using the data balancing method. We used demographic and clinical data from a multicenter COVID-19 registry. We extracted 10,657 records for confirmed patients with PCR or CT scans, who were hospitalized at least for 24 hours at the end of March 2021. The death rate was 16.06%. Generally, models with 60 and 40 features performed better. Among the 240 models, the C5 models with 60 and 40 features performed well. The C5 model with 60 features outperformed the rest based on all evaluation metrics; however, in external validation, C5 with 32 features performed better. This model had high accuracy (91.18%), F-score (0.916), Area under the Curve (0.96), sensitivity (94.2%), and specificity (88%). The model suggested in this study uses simple and available data and can be applied to predict death among COVID-19 patients. Furthermore, we concluded that machine learning models may perform differently in different subpopulations in terms of gender and age groups.

摘要

预测 COVID-19 患者的死亡可以帮助医疗保健提供者更好地管理患者。我们旨在开发机器学习模型来预测这些患者的住院内死亡。我们使用不同的特征集和数据平衡方法开发的数据集开发了不同的模型。我们使用了来自多中心 COVID-19 登记处的人口统计学和临床数据。我们提取了 10657 名记录,这些记录是 2021 年 3 月底至少住院 24 小时的 PCR 或 CT 扫描确诊患者。死亡率为 16.06%。一般来说,具有 60 和 40 个特征的模型表现更好。在 240 个模型中,具有 60 和 40 个特征的 C5 模型表现良好。基于所有评估指标,具有 60 个特征的 C5 模型优于其他模型;然而,在外部验证中,具有 32 个特征的 C5 模型表现更好。该模型具有较高的准确性(91.18%)、F 分数(0.916)、曲线下面积(0.96)、敏感性(94.2%)和特异性(88%)。本研究中提出的模型使用简单且可用的数据,可以应用于预测 COVID-19 患者的死亡。此外,我们得出结论,机器学习模型在性别和年龄组等不同亚群中的表现可能不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9198/9226971/c247af9c5100/JHE2022-1644910.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验