Suppr超能文献

从重新编码到 MHC I 类免疫展示的肽:丰富病毒表达、病毒脆弱性和病毒逃逸。

From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion.

机构信息

Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland.

Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.

出版信息

Viruses. 2021 Jun 27;13(7):1251. doi: 10.3390/v13071251.

Abstract

Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.

摘要

许多病毒,尤其是 RNA 病毒,在其表达和少数几个终止密码子通读的解码中利用程序性核糖体移码和/或终止密码子通读,其中 UGA 被动态重新定义为指定硒代半胱氨酸。这种重编码可以有效地增加病毒的编码能力,并产生具有相同 N 末端结构域但不同 C 末端结构域的产物的设定比例。重编码也可以是调节性的,或者产生具有非通用的第 21 个直接编码氨基酸的产物。为了在表达许多病毒时提高翻译速度而牺牲保真度,从而为宿主免疫防御创造了机会。与宿主的机会主义相反,某些病毒,包括一些持续性病毒,将重编码或偶然移码作为逃避免疫反应或特定药物的策略的一部分。在经过深入研究的小病毒中,有几个重编码实例多年来一直未被发现,其鉴定解决了难题。核糖体棘轮的基本重要性与不变三联体解码的最初强烈观点一致,但没有预见到反密码子:密码子短暂解离的可能性。正在进行重编码的深层次动力学和结构理解,刚刚确定了与 SARS-CoV-2 基因组表达所需的移码相关的高级结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fe5/8310308/73c5b8d68f7e/viruses-13-01251-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验