Shen Shaofei, Wang Xin, Niu Yanbing
College of Life Science, Shanxi Agricultural University, Jinzhong 030801, China.
Micromachines (Basel). 2021 Jun 27;12(7):758. doi: 10.3390/mi12070758.
Inertial microfluidics enables fluid and particle manipulation for biomedical and clinical applications. Herein, we developed a simple semicircular microchannel with an ultra-low aspect ratio to interrogate the unique formations of the helical vortex and Dean vortex by introducing order micro-obstacles. The purposeful and powerful regulation of dimensional confinement in the microchannel achieved significantly improved fluid mixing effects and fluid and particle manipulation in a high-throughput, highly efficient and easy-to-use way. Together, the results offer insights into the geometry-induced multi-vortex mechanism, which may contribute to simple, passive, continuous operations for biochemical and clinical applications, such as the detection and isolation of circulating tumor cells for cancer diagnostics.
惯性微流控技术能够实现用于生物医学和临床应用的流体及颗粒操控。在此,我们开发了一种具有超低纵横比的简单半圆形微通道,通过引入有序微障碍物来探究螺旋涡旋和迪恩涡旋的独特形成。在微通道中有目的地对尺寸限制进行有效调控,以高通量、高效且易用的方式显著改善了流体混合效果以及流体和颗粒操控。总之,这些结果为几何形状诱导的多涡旋机制提供了见解,这可能有助于实现用于生化和临床应用的简单、被动、连续操作,例如用于癌症诊断的循环肿瘤细胞的检测和分离。