Suppr超能文献

雾霾程度评估器:一种用于雾霾密度估计的知识驱动方法。

Haziness Degree Evaluator: A Knowledge-Driven Approach for Haze Density Estimation.

作者信息

Ngo Dat, Lee Gi-Dong, Kang Bongsoon

机构信息

Department of Electronics Engineering, Dong-A University, Busan 49315, Korea.

出版信息

Sensors (Basel). 2021 Jun 4;21(11):3896. doi: 10.3390/s21113896.

Abstract

Haze is a term that is widely used in image processing to refer to natural and human-activity-emitted aerosols. It causes light scattering and absorption, which reduce the visibility of captured images. This reduction hinders the proper operation of many photographic and computer-vision applications, such as object recognition/localization. Accordingly, haze removal, which is also known as image dehazing or defogging, is an apposite solution. However, existing dehazing algorithms unconditionally remove haze, even when haze occurs occasionally. Therefore, an approach for haze density estimation is highly demanded. This paper then proposes a model that is known as the haziness degree evaluator to predict haze density from a single image without reference to a corresponding haze-free image, an existing georeferenced digital terrain model, or training on a significant amount of data. The proposed model quantifies haze density by optimizing an objective function comprising three haze-relevant features that result from correlation and computation analysis. This objective function is formulated to maximize the image's saturation, brightness, and sharpness while minimizing the dark channel. Additionally, this study describes three applications of the proposed model in hazy/haze-free image classification, dehazing performance assessment, and single image dehazing. Extensive experiments on both real and synthetic datasets demonstrate its efficacy in these applications.

摘要

雾霭是图像处理中广泛使用的一个术语,用于指代自然和人类活动排放的气溶胶。它会导致光散射和吸收,从而降低所拍摄图像的能见度。这种降低阻碍了许多摄影和计算机视觉应用的正常运行,如目标识别/定位。因此,去除雾霭(也称为图像去雾或除雾)是一个合适的解决方案。然而,现有的去雾算法会无条件地去除雾霭,即使雾霭只是偶尔出现。因此,对雾霭密度估计方法的需求非常迫切。本文随后提出了一种称为雾霭程度评估器的模型,用于从单幅图像预测雾霭密度,而无需参考相应的无雾图像、现有的地理参考数字地形模型或大量数据进行训练。所提出的模型通过优化一个由相关分析和计算分析得出的包含三个与雾霭相关特征的目标函数来量化雾霭密度。该目标函数的制定旨在最大化图像的饱和度、亮度和清晰度,同时最小化暗通道。此外,本研究描述了所提出模型在有雾/无雾图像分类、去雾性能评估和单幅图像去雾中的三个应用。在真实和合成数据集上进行的大量实验证明了其在这些应用中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验