Department of Mechanical Engineering, National Chung Hsing University, Taichung City 402, Taiwan.
AU Optronics Corporation, Taichung 407, Taiwan.
Sensors (Basel). 2021 Jun 7;21(11):3929. doi: 10.3390/s21113929.
This study discusses convolutional neural networks (CNNs) for vibration signals analysis, including applications in machining surface roughness estimation, bearing faults diagnosis, and tool wear detection. The one-dimensional CNNs (1DCNN) and two-dimensional CNNs (2DCNN) are applied for regression and classification applications using different types of inputs, e.g., raw signals, and time-frequency spectra images by short time Fourier transform. In the application of regression and the estimation of machining surface roughness, the 1DCNN is utilized and the corresponding CNN structure (hyper parameters) optimization is proposed by using uniform experimental design (UED), neural network, multiple regression, and particle swarm optimization. It demonstrates the effectiveness of the proposed approach to obtain a structure with better performance. In applications of classification, bearing faults and tool wear classification are carried out by vibration signals analysis and CNN. Finally, the experimental results are shown to demonstrate the effectiveness and performance of our approach.
本研究讨论了卷积神经网络(CNN)在振动信号分析中的应用,包括在加工表面粗糙度估计、轴承故障诊断和刀具磨损检测中的应用。一维卷积神经网络(1DCNN)和二维卷积神经网络(2DCNN)分别应用于回归和分类应用,使用不同类型的输入,例如原始信号和通过短时傅里叶变换得到的时频谱图像。在回归和加工表面粗糙度估计的应用中,使用了一维卷积神经网络,并通过均匀实验设计(UED)、神经网络、多元回归和粒子群优化来提出相应的 CNN 结构(超参数)优化。结果表明,该方法能够获得性能更好的结构。在分类应用中,通过振动信号分析和 CNN 进行了轴承故障和刀具磨损分类。最后,展示了实验结果,以证明我们方法的有效性和性能。