Lin Cheng-Jian, Jeng Shiou-Yun
Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
School of Intelligence, National Taichung University of Science and Technology, Taichung 404, Taiwan.
Diagnostics (Basel). 2020 Sep 1;10(9):662. doi: 10.3390/diagnostics10090662.
Breast cancer, a common cancer type, is a major health concern in women. Recently, researchers used convolutional neural networks (CNNs) for medical image analysis and demonstrated classification performance for breast cancer diagnosis from within histopathological image datasets. However, the parameter settings of a CNN model are complicated, and using Breast Cancer Histopathological Database data for the classification is time-consuming. To overcome these problems, this study used a uniform experimental design (UED) and optimized the CNN parameters of breast cancer histopathological image classification. In UED, regression analysis was used to optimize the parameters. The experimental results indicated that the proposed method with UED parameter optimization provided 84.41% classification accuracy rate. In conclusion, the proposed method can improve the classification accuracy effectively, with results superior to those of other similar methods.
乳腺癌是一种常见的癌症类型,是女性主要的健康问题。最近,研究人员将卷积神经网络(CNN)用于医学图像分析,并展示了从组织病理学图像数据集中进行乳腺癌诊断的分类性能。然而,CNN模型的参数设置很复杂,并且使用乳腺癌组织病理学数据库数据进行分类很耗时。为了克服这些问题,本研究采用了均匀实验设计(UED)并优化了乳腺癌组织病理学图像分类的CNN参数。在UED中,使用回归分析来优化参数。实验结果表明,所提出的具有UED参数优化的方法提供了84.41%的分类准确率。总之,所提出的方法可以有效提高分类准确率,其结果优于其他类似方法。