Federal Research Centre of Nutrition and Biotechnology, Ust'inskiy pr., 2/14, 109240 Moscow, Russia.
Toxins (Basel). 2021 Jun 7;13(6):404. doi: 10.3390/toxins13060404.
Recent surveys report the occurrence of and metabolites (aflatoxins (AFLs), ochratoxin A (OTA), cyclopiazonic and mycophenolic acids (MPA), sterigmatocystin (STC), citrinin), (trichothecenes, zearalenone (ZEA), fumonisins (FBs), enniatins (ENNs)) and (alternariol (AOH), its methyl ether (AME), tentoxin (TE), and tenuazonic acid (TNZ)) toxins in dry and herbal tea samples. Since tea is consumed in the form of infusion, correct risk assessment needs evaluation of mycotoxins' transfer rates. We have studied the transfer of AFLs, OTA, STC, deoxynivalenol (DON), ZEA, FBs, T-2, and HT-2 toxins, AOH, AME, TE, ENN A and B, beauvericin (BEA), and MPA from the spiked green tea matrix into an infusion under variation of preparation time and water characteristics (total dissolved solids (TDS) and pH). Analytes were detected by HPLC-MS/MS. The main factors affecting transfer rate proved to be mycotoxins' polarity, pH of the resulting infusion (for OTA, FB2, and MPA) and matrix-infusion contact period. The concentration of mycotoxins increased by 20-50% within the first ten minutes of infusing, after that kinetic curve changed slowly. The concentration of DON and FB2 increased by about 10%, for ZEA, MPA, and STC it stayed constant, while for T-2, TE, AOH, and AFLs G1 and G2 it went down. Maximum transfer correlated well with analytes polarity. Maximum transfer of ENNs, BEA, STC, ZEA, and AOH into infusion was below 25%; AFLs-25-45%; DON, TE, and T-2 toxins 60-90%, FB1-80-100%. The concentration of OTA, MPA, and FB2 in the infusion depended on its pH. At pH about four, 20%, 40%, and 60% of these toxins transferred into an infusion, at pH about seven, their concentrations doubled. Water TDS did not affect transfer significantly.
最近的调查报道称,在干燥的茶和草药茶样品中存在 和代谢物(黄曲霉毒素(AFLs)、赭曲霉毒素 A(OTA)、环匹阿尼酸和麦角酸(MPA)、桔青霉素(STC)、桔霉素)、(单端孢霉烯族毒素、玉米赤霉烯酮(ZEA)、伏马菌素(FBs)、恩镰孢菌素(ENNs))和 (交链孢酚(AOH)、其甲醚(AME)、萎蔫菌素(TE)和 tenuazonic 酸(TNZ))毒素。由于茶是以浸泡的形式饮用的,因此正确的风险评估需要评估霉菌毒素的转移率。我们研究了 AFLs、OTA、STC、脱氧雪腐镰刀菌烯醇(DON)、ZEA、FBs、T-2 和 HT-2 毒素、AOH、AME、TE、ENN A 和 B、 beauvericin(BEA)和 MPA 从污染的绿茶基质转移到浸泡液中的情况,浸泡时间和水特性(总溶解固体(TDS)和 pH)有所变化。分析物通过 HPLC-MS/MS 进行检测。影响转移率的主要因素被证明是霉菌毒素的极性、所得浸泡液的 pH(对于 OTA、FB2 和 MPA)和基质-浸泡液接触时间。在浸泡的前十分钟内,霉菌毒素的浓度增加了 20-50%,之后动力学曲线变化缓慢。DON 和 FB2 的浓度增加了约 10%,ZEA、MPA 和 STC 的浓度保持不变,而 T-2、TE、AOH 和 AFLs G1 和 G2 的浓度则下降。最大转移与分析物的极性密切相关。ENNs、BEA、STC、ZEA 和 AOH 最大转移到浸泡液中的比例低于 25%;AFLs-25-45%;DON、TE 和 T-2 毒素 60-90%,FB1-80-100%。OTA、MPA 和 FB2 在浸泡液中的浓度取决于其 pH 值。在 pH 值约为四时,20%、40%和 60%的这些毒素转移到浸泡液中,在 pH 值约为七时,其浓度增加了一倍。水 TDS 对转移的影响不明显。