Suppr超能文献

基于深度学习的高效癫痫发作预测。

Efficient Epileptic Seizure Prediction Based on Deep Learning.

出版信息

IEEE Trans Biomed Circuits Syst. 2019 Oct;13(5):804-813. doi: 10.1109/TBCAS.2019.2929053. Epub 2019 Jul 17.

Abstract

Epilepsy is one of the world's most common neurological diseases. Early prediction of the incoming seizures has a great influence on epileptic patients' life. In this paper, a novel patient-specific seizure prediction technique based on deep learning and applied to long-term scalp electroencephalogram (EEG) recordings is proposed. The goal is to accurately detect the preictal brain state and differentiate it from the prevailing interictal state as early as possible and make it suitable for real time. The features extraction and classification processes are combined into a single automated system. Raw EEG signal without any preprocessing is considered as the input to the system which further reduces the computations. Four deep learning models are proposed to extract the most discriminative features which enhance the classification accuracy and prediction time. The proposed approach takes advantage of the convolutional neural network in extracting the significant spatial features from different scalp positions and the recurrent neural network in expecting the incidence of seizures earlier than the current methods. A semi-supervised approach based on transfer learning technique is introduced to improve the optimization problem. A channel selection algorithm is proposed to select the most relevant EEG channels which makes the proposed system good candidate for real-time usage. An effective test method is utilized to ensure robustness. The achieved highest accuracy of 99.6% and lowest false alarm rate of 0.004 h along with very early seizure prediction time of 1 h make the proposed method the most efficient among the state of the art.

摘要

癫痫是世界上最常见的神经系统疾病之一。对即将到来的癫痫发作进行早期预测对癫痫患者的生活有很大影响。本文提出了一种基于深度学习的新型患者特异性癫痫预测技术,并应用于长期头皮脑电图(EEG)记录。目的是尽早准确地检测出癫痫发作前的脑状态,并将其与普遍的癫痫发作间期区分开来,并使其适合实时应用。特征提取和分类过程结合到一个单一的自动化系统中。系统将未经任何预处理的原始 EEG 信号作为输入,从而进一步减少了计算量。提出了四种深度学习模型来提取最具判别力的特征,以提高分类精度和预测时间。该方法利用卷积神经网络从不同头皮位置提取显著的空间特征,利用递归神经网络比现有方法更早地预测癫痫发作的发生。引入了一种基于迁移学习技术的半监督方法来改善优化问题。提出了一种通道选择算法来选择最相关的 EEG 通道,这使得所提出的系统成为实时应用的良好候选者。采用有效的测试方法来确保鲁棒性。所提出的方法实现了 99.6%的最高准确率和 0.004 h -1 的最低假警报率,以及非常早的 1 h 的癫痫发作预测时间,使其成为最先进方法中最有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验