Pfeiffenberger Moritz, Damerau Alexandra, Lang Annemarie, Buttgereit Frank, Hoff Paula, Gaber Timo
Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
German Rheumatism Research Centre Berlin (DRFZ), The Leibniz Institute, 10117 Berlin, Germany.
Biomedicines. 2021 Jun 28;9(7):748. doi: 10.3390/biomedicines9070748.
Fractures are one of the most frequently occurring traumatic events worldwide. Approximately 10% of fractures lead to bone healing disorders, resulting in strain for affected patients and enormous costs for society. In order to shed light into underlying mechanisms of bone regeneration (habitual or disturbed), and to develop new therapeutic strategies, various in vivo, ex vivo and in vitro models can be applied. Undeniably, in vivo models include the systemic and biological situation. However, transferability towards the human patient along with ethical concerns regarding in vivo models have to be considered. Fostered by enormous technical improvements, such as bioreactors, on-a-chip-technologies and bone tissue engineering, sophisticated in vitro models are of rising interest. These models offer the possibility to use human cells from individual donors, complex cell systems and 3D models, therefore bridging the transferability gap, providing a platform for the introduction of personalized precision medicine and finally sparing animals. Facing diverse processes during fracture healing and thus various scientific opportunities, the reliability of results oftentimes depends on the choice of an appropriate model. Hence, we here focus on categorizing available models with respect to the requirements of the scientific approach.
Biomedicines. 2021-6-28
Clin Orthop Relat Res. 1999-10
Front Bioeng Biotechnol. 2021-9-30
Acta Biotheor. 2010-12
Maturitas. 2013-4-4
In Vitro Model. 2022
Front Bioeng Biotechnol. 2024-10-16
Curr Issues Mol Biol. 2024-2-6
Exp Physiol. 2023-3
Nanomaterials (Basel). 2022-4-2
Injury. 2021-6
Curr Osteoporos Rep. 2021-2
Int J Mol Sci. 2020-12-24
Mater Sci Eng C Mater Biol Appl. 2020-12
J Orthop Translat. 2020-6-7