Suppr超能文献

基于深度相机的基于姿势分类算法的体力活动能量消耗估计系统。

Depth-Camera Based Energy Expenditure Estimation System for Physical Activity Using Posture Classification Algorithm.

机构信息

Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237303, Taiwan.

College of Electrical Engineering and Computer Science, National Taipei University, New Taipei City 237303, Taiwan.

出版信息

Sensors (Basel). 2021 Jun 19;21(12):4216. doi: 10.3390/s21124216.

Abstract

Insufficient physical activity is common in modern society. By estimating the energy expenditure (EE) of different physical activities, people can develop suitable exercise plans to improve their lifestyle quality. However, several limitations still exist in the related works. Therefore, the aim of this study is to propose an accurate EE estimation model based on depth camera data with physical activity classification to solve the limitations in the previous research. To decide the best location and amount of cameras of the EE estimation, three depth cameras were set at three locations, namely the side, rear side, and rear views, to obtain the kinematic data and EE estimation. Support vector machine was used for physical activity classification. Three EE estimation models, namely linear regression, multilayer perceptron (MLP), and convolutional neural network (CNN) models, were compared and determined the model with optimal performance in different experimental settings. The results have shown that if only one depth camera is available, optimal EE estimation can be obtained using the side view and MLP model. The mean absolute error (MAE), mean square error (MSE), and root MSE (RMSE) of the classification results under the aforementioned settings were 0.55, 0.66, and 0.81, respectively. If higher accuracy is required, two depth cameras can be set at the side and rear views, the CNN model can be used for light-to-moderate activities, and the MLP model can be used for vigorous activities. The RMSEs for estimating the EEs of standing, walking, and running were 0.19, 0.57, and 0.96, respectively. By applying the different models on different amounts of cameras, the optimal performance can be obtained, and this is also the first study to discuss the issue.

摘要

现代人普遍运动量不足。通过估计不同身体活动的能量消耗 (EE),人们可以制定合适的锻炼计划来提高生活质量。然而,相关工作仍存在一些局限性。因此,本研究旨在提出一种基于深度相机数据的准确 EE 估计模型,结合身体活动分类,以解决先前研究中的局限性。为了确定 EE 估计的最佳摄像机位置和数量,我们在三个位置(侧面、后侧和后视图)设置了三个深度摄像机,以获取运动学数据和 EE 估计值。支持向量机用于身体活动分类。我们比较了三种 EE 估计模型,即线性回归、多层感知机 (MLP) 和卷积神经网络 (CNN) 模型,并确定了在不同实验设置下表现最佳的模型。结果表明,如果只有一个深度摄像机可用,则可以使用侧面视图和 MLP 模型获得最佳的 EE 估计值。在上述设置下,分类结果的平均绝对误差 (MAE)、均方误差 (MSE) 和均方根误差 (RMSE) 分别为 0.55、0.66 和 0.81。如果需要更高的准确性,可以在侧面和后侧设置两个深度摄像机,使用 CNN 模型估计轻至中度活动,使用 MLP 模型估计剧烈活动。站立、行走和跑步的 EE 估计 RMSE 分别为 0.19、0.57 和 0.96。通过在不同数量的摄像机上应用不同的模型,可以获得最佳性能,这也是首次讨论该问题的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1a5/8235583/17d2d03baea4/sensors-21-04216-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验