Suppr超能文献

使用可穿戴传感器进行活动识别和能量消耗估计中心率变异性参数的作用。

The Role of Heart-Rate Variability Parameters in Activity Recognition and Energy-Expenditure Estimation Using Wearable Sensors.

机构信息

Center for Bionics, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea.

出版信息

Sensors (Basel). 2017 Jul 24;17(7):1698. doi: 10.3390/s17071698.

Abstract

Human-activity recognition (HAR) and energy-expenditure (EE) estimation are major functions in the mobile healthcare system. Both functions have been investigated for a long time; however, several challenges remain unsolved, such as the confusion between activities and the recognition of energy-consuming activities involving little or no movement. To solve these problems, we propose a novel approach using an accelerometer and electrocardiogram (ECG). First, we collected a database of six activities (sitting, standing, walking, ascending, resting and running) of 13 voluntary participants. We compared the HAR performances of three models with respect to the input data type (with none, all, or some of the heart-rate variability (HRV) parameters). The best recognition performance was 96.35%, which was obtained with some selected HRV parameters. EE was also estimated for different choices of the input data type (with or without HRV parameters) and the model type (single and activity-specific). The best estimation performance was found in the case of the activity-specific model with HRV parameters. Our findings indicate that the use of human physiological data, obtained by wearable sensors, has a significant impact on both HAR and EE estimation, which are crucial functions in the mobile healthcare system.

摘要

人体活动识别 (HAR) 和能量消耗 (EE) 估计是移动医疗保健系统的主要功能。这两个功能已经研究了很长时间,但仍有一些未解决的挑战,例如活动之间的混淆以及对涉及很少或没有运动的耗能活动的识别。为了解决这些问题,我们提出了一种使用加速度计和心电图 (ECG) 的新方法。首先,我们收集了 13 名自愿参与者的六种活动(坐、站、走、上、休息和跑)的数据库。我们比较了三个模型的 HAR 性能,输入数据类型分别为(无、全、或部分心率变异性 (HRV) 参数)。使用一些选择的 HRV 参数可获得最佳识别性能,为 96.35%。对于输入数据类型(带或不带 HRV 参数)和模型类型(单一和特定活动)的不同选择,也对 EE 进行了估计。在具有 HRV 参数的特定活动模型的情况下,发现了最佳的估计性能。我们的研究结果表明,使用可穿戴传感器获得的人体生理数据对 HAR 和 EE 估计有重大影响,这是移动医疗保健系统的关键功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/5539477/bb75e4c1d01e/sensors-17-01698-g001.jpg

相似文献

3
Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models.
J Biomed Inform. 2015 Aug;56:195-204. doi: 10.1016/j.jbi.2015.06.008. Epub 2015 Jun 14.
4
Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
IEEE J Biomed Health Inform. 2015 Jan;19(1):219-26. doi: 10.1109/JBHI.2014.2313039. Epub 2014 Mar 20.
6
Posture and activity recognition and energy expenditure estimation in a wearable platform.
IEEE J Biomed Health Inform. 2015 Jul;19(4):1339-46. doi: 10.1109/JBHI.2015.2432454. Epub 2015 May 19.
7
Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review.
Folia Med (Plovdiv). 2018 Mar 1;60(1):7-20. doi: 10.2478/folmed-2018-0012.
9
Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure.
Physiol Meas. 2012 Nov;33(11):1811-30. doi: 10.1088/0967-3334/33/11/1811. Epub 2012 Oct 31.

引用本文的文献

1
Nutritional alterations, adverse consequences, and comprehensive assessment in spinal cord injury: a review.
Front Nutr. 2025 May 9;12:1576976. doi: 10.3389/fnut.2025.1576976. eCollection 2025.
3
A contactless monitoring system for accurately predicting energy expenditure during treadmill walking based on an ensemble neural network.
iScience. 2024 Feb 2;27(3):109093. doi: 10.1016/j.isci.2024.109093. eCollection 2024 Mar 15.
4
Multi-dimensional task recognition for human-robot teaming: literature review.
Front Robot AI. 2023 Aug 7;10:1123374. doi: 10.3389/frobt.2023.1123374. eCollection 2023.
5
Heart Rate Variability Code: Does It Exist and Can We Hack It?
Bioengineering (Basel). 2023 Jul 10;10(7):822. doi: 10.3390/bioengineering10070822.
6
DDM-HSA: Dual Deterministic Model-Based Heart Sound Analysis for Daily Life Monitoring.
Sensors (Basel). 2023 Feb 22;23(5):2423. doi: 10.3390/s23052423.
8
SensorHub: Multimodal Sensing in Real-Life Enables Home-Based Studies.
Sensors (Basel). 2022 Jan 5;22(1):408. doi: 10.3390/s22010408.

本文引用的文献

1
A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2631-2635. doi: 10.1109/EMBC.2016.7591270.
2
Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults.
PLoS One. 2016 Dec 9;11(12):e0167472. doi: 10.1371/journal.pone.0167472. eCollection 2016.
3
Human Activity Recognition by Combining a Small Number of Classifiers.
IEEE J Biomed Health Inform. 2016 Sep;20(5):1342-51. doi: 10.1109/JBHI.2015.2458274. Epub 2015 Jul 17.
4
Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors.
IEEE J Biomed Health Inform. 2016 Mar;20(2):469-75. doi: 10.1109/JBHI.2015.2390493. Epub 2015 Jan 12.
5
Human daily activity recognition with sparse representation using wearable sensors.
IEEE J Biomed Health Inform. 2013 May;17(3):553-60. doi: 10.1109/jbhi.2013.2253613.
6
Highly accurate recognition of human postures and activities through classification with rejection.
IEEE J Biomed Health Inform. 2014 Jan;18(1):309-15. doi: 10.1109/JBHI.2013.2287400.
7
Heart rate variability and blood pressure during dynamic and static exercise at similar heart rate levels.
PLoS One. 2013 Dec 13;8(12):e83690. doi: 10.1371/journal.pone.0083690. eCollection 2013.
8
Designing a robust activity recognition framework for health and exergaming using wearable sensors.
IEEE J Biomed Health Inform. 2014 Sep;18(5):1636-46. doi: 10.1109/JBHI.2013.2287504. Epub 2013 Oct 25.
9
Kubios HRV--heart rate variability analysis software.
Comput Methods Programs Biomed. 2014;113(1):210-20. doi: 10.1016/j.cmpb.2013.07.024. Epub 2013 Aug 6.
10
Activity recognition using a single accelerometer placed at the wrist or ankle.
Med Sci Sports Exerc. 2013 Nov;45(11):2193-203. doi: 10.1249/MSS.0b013e31829736d6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验