Frank Michael P, Shukla Karpur
Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185, USA.
Department of Electrical and Computer Engineering, Brown University, Providence, RI 02906, USA.
Entropy (Basel). 2021 Jun 1;23(6):701. doi: 10.3390/e23060701.
The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. ) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer's Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed.
可逆计算范式旨在为通用经典数字计算提供一个新的基础,这种计算能够规避传统的、不可逆数字范式在能量效率方面的热力学限制。然而,迄今为止,经典可逆计算(RC)的基本原理和分析尚未用利用非平衡量子热力学(NEQT)现代形式方法的术语来表述。在本文中,我们开始为可逆计算的物理学建立一个基于NEQT的基础。我们使用具有多个渐近态的戈里尼 - 科萨克夫斯基 - 苏达山 - 林德布拉德动力学框架(又名 ),纳入了资源理论、全计数统计和随机热力学的最新成果。重要结论包括,正如预期的那样:(1)当我们考虑相关性损失时,兰道尔原理确实为确定性计算机传统不可逆架构中的熵产生设定了严格的下限;(2)替代计算范式的实现可能避免此类损失,从而规避兰道尔极限,这可能使未来数字计算技术的效率无限期持续提高。我们还概述了一项研究计划,以确定可逆计算机器的基本最小能量耗散与速度的函数关系。