Barato Andre C, Seifert Udo
II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042150. doi: 10.1103/PhysRevE.90.042150. Epub 2014 Oct 31.
We generalize stochastic thermodynamics to include information reservoirs. Such information reservoirs, which can be modeled as a sequence of bits, modify the second law. For example, work extraction from a system in contact with a single heat bath becomes possible if the system also interacts with an information reservoir. We obtain an inequality, and the corresponding fluctuation theorem, generalizing the standard entropy production of stochastic thermodynamics. From this inequality we can derive an information processing entropy production, which gives the second law in the presence of information reservoirs. We also develop a systematic linear response theory for information processing machines. For a unicyclic machine powered by an information reservoir, the efficiency at maximum power can deviate from the standard value of 1/2. For the case where energy is consumed to erase the tape, the efficiency at maximum erasure rate is found to be 1/2.
我们将随机热力学推广到包含信息库的情形。这种可被建模为一系列比特的信息库会修改第二定律。例如,如果一个系统还与一个信息库相互作用,那么从与单个热库接触的系统中提取功就变得可行。我们得到一个不等式以及相应的涨落定理,推广了随机热力学的标准熵产生。从这个不等式我们可以推导出一个信息处理熵产生,它给出了存在信息库时的第二定律。我们还为信息处理机器发展了一种系统的线性响应理论。对于由信息库驱动的单循环机器,最大功率下的效率可能会偏离标准值1/2。对于能量被消耗用于擦除磁带的情况,发现最大擦除率下的效率为1/2。