Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
Int J Mol Sci. 2021 Jun 9;22(12):6226. doi: 10.3390/ijms22126226.
The present limitations in the pathogenicity prediction of BRCA1 and BRCA2 (BRCA1/2) missense variants constitute an important problem with negative consequences for the diagnosis of hereditary breast and ovarian cancer. However, it has been proposed that the use of endophenotype predictions, i.e., computational estimates of the outcomes of functional assays, can be a good option to address this bottleneck. The application of this idea to the BRCA1/2 variants in the CAGI 5-ENIGMA international challenge has shown promising results. Here, we developed this approach, exploring the predictive performances of the regression models applied to the BRCA1/2 variants for which the values of the homology-directed DNA repair and saturation genome editing assays are available. Our results first showed that we can generate endophenotype estimates using a few molecular-level properties. Second, we show that the accuracy of these estimates is enough to obtain pathogenicity predictions comparable to those of many standard tools. Third, endophenotype-based predictions are complementary to, but do not outperform, those of a Random Forest model trained using variant pathogenicity annotations instead of endophenotype values. In summary, our results confirmed the usefulness of the endophenotype approach for the pathogenicity prediction of the BRCA1/2 missense variants, suggesting different options for future improvements.
目前,BRCA1 和 BRCA2(BRCA1/2)错义变异体致病性预测的局限性是一个重要问题,对遗传性乳腺癌和卵巢癌的诊断有负面影响。然而,有人提出,使用内表型预测,即功能测定结果的计算估计,可以是解决这一瓶颈的一个很好的选择。将这一想法应用于 CAGI 5-ENIGMA 国际挑战赛中的 BRCA1/2 变体,已经显示出了有希望的结果。在这里,我们开发了这种方法,探索了回归模型在可获得同源定向 DNA 修复和饱和基因组编辑测定值的 BRCA1/2 变体中的预测性能。我们的结果首先表明,我们可以使用一些分子水平的特性来生成内表型估计值。其次,我们表明,这些估计的准确性足以获得与许多标准工具相当的致病性预测。第三,基于内表型的预测是互补的,但并不优于使用变体致病性注释而不是内表型值训练的随机森林模型的预测。总之,我们的结果证实了内表型方法在 BRCA1/2 错义变异体致病性预测中的有用性,为未来的改进提供了不同的选择。