Suppr超能文献

CAGI5:基于进化作用方程的预测的客观性能评估。

CAGI5: Objective performance assessments of predictions based on the Evolutionary Action equation.

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.

Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas.

出版信息

Hum Mutat. 2019 Sep;40(9):1436-1454. doi: 10.1002/humu.23873. Epub 2019 Aug 7.

Abstract

Many computational approaches estimate the effect of coding variants, but their predictions often disagree with each other. These contradictions confound users and raise questions regarding reliability. Performance assessments can indicate the expected accuracy for each method and highlight advantages and limitations. The Critical Assessment of Genome Interpretation (CAGI) community aims to organize objective and systematic assessments: They challenge predictors on unpublished experimental and clinical data and assign independent assessors to evaluate the submissions. We participated in CAGI experiments as predictors, using the Evolutionary Action (EA) method to estimate the fitness effect of coding mutations. EA is untrained, uses homology information, and relies on a formal equation: The fitness effect equals the functional sensitivity to residue changes multiplied by the magnitude of the substitution. In previous CAGI experiments (between 2011 and 2016), our submissions aimed to predict the protein activity of single mutants. In 2018 (CAGI5), we also submitted predictions regarding clinical associations, folding stability, and matching genomic data with phenotype. For all these diverse challenges, we used EA to predict the fitness effect of variants, adjusted to specifically address each question. Our submissions had consistently good performance, suggesting that EA predicts reliably the effects of genetic variants.

摘要

许多计算方法可以估算编码变异的影响,但它们的预测结果往往相互矛盾。这些矛盾让用户感到困惑,并引发了对可靠性的质疑。性能评估可以指出每种方法的预期准确性,并突出其优点和局限性。基因组解读的关键评估(Critical Assessment of Genome Interpretation,CAGI)社区旨在组织客观和系统的评估:他们会在未发布的实验和临床数据上对预测器发起挑战,并指定独立评估者来评估提交的结果。我们作为预测器参与了 CAGI 实验,使用进化作用(Evolutionary Action,EA)方法来估算编码突变的适应度效应。EA 没有经过训练,利用同源信息,并依赖于一个正式的方程式:适应度效应等于对残基变化的功能敏感性乘以取代的幅度。在之前的 CAGI 实验(2011 年至 2016 年)中,我们的提交结果旨在预测单突变体的蛋白质活性。在 2018 年(CAGI5),我们还提交了有关临床关联、折叠稳定性以及将基因组数据与表型相匹配的预测结果。对于所有这些多样化的挑战,我们都使用 EA 来预测变异的适应度效应,并对其进行了专门调整以解决每个问题。我们的提交结果始终表现出色,这表明 EA 可以可靠地预测遗传变异的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验