用于检测赤狐身体姿势和行为的计算机视觉
Computer Vision for Detection of Body Posture and Behavior of Red Foxes.
作者信息
Schütz Anne K, Krause E Tobias, Fischer Mareike, Müller Thomas, Freuling Conrad M, Conraths Franz J, Homeier-Bachmann Timo, Lentz Hartmut H K
机构信息
Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Animal Welfare and Animal Husbandry, Dörnbergstr. 25/27, 29223 Celle, Germany.
出版信息
Animals (Basel). 2022 Jan 19;12(3):233. doi: 10.3390/ani12030233.
The behavior of animals is related to their health and welfare status. The latter plays a particular role in animal experiments, where continuous monitoring is essential for animal welfare. In this study, we focus on red foxes in an experimental setting and study their behavior. Although animal behavior is a complex concept, it can be described as a combination of body posture and activity. To measure body posture and activity, video monitoring can be used as a non-invasive and cost-efficient tool. While it is possible to analyze the video data resulting from the experiment manually, this method is time consuming and costly. We therefore use computer vision to detect and track the animals over several days. The detector is based on a neural network architecture. It is trained to detect red foxes and their body postures, i.e., 'lying', 'sitting', and 'standing'. The trained algorithm has a mean average precision of 99.91%. The combination of activity and posture results in nearly continuous monitoring of animal behavior. Furthermore, the detector is suitable for real-time evaluation. In conclusion, evaluating the behavior of foxes in an experimental setting using computer vision is a powerful tool for cost-efficient real-time monitoring.
动物的行为与其健康和福利状况相关。后者在动物实验中起着特殊作用,在动物实验中持续监测对动物福利至关重要。在本研究中,我们聚焦于实验环境中的赤狐并研究它们的行为。尽管动物行为是一个复杂的概念,但它可以被描述为身体姿势和活动的组合。为了测量身体姿势和活动,可以使用视频监测作为一种非侵入性且经济高效的工具。虽然可以手动分析实验产生的视频数据,但这种方法既耗时又昂贵。因此,我们使用计算机视觉在数天内检测和跟踪动物。该检测器基于神经网络架构。它经过训练以检测赤狐及其身体姿势,即“躺卧”、“坐着”和“站立”。训练后的算法平均精度为99.91%。活动和姿势的结合实现了对动物行为几乎连续的监测。此外,该检测器适用于实时评估。总之,使用计算机视觉在实验环境中评估狐狸行为是一种用于经济高效的实时监测的强大工具。
相似文献
Animals (Basel). 2022-1-19
Animals (Basel). 2021-6-9
Sensors (Basel). 2019-8-29
Animals (Basel). 2021-4-30
引用本文的文献
Animals (Basel). 2024-6-12
Animals (Basel). 2024-5-8
Sensors (Basel). 2023-9-16
本文引用的文献
Animals (Basel). 2021-6-9
Animals (Basel). 2020-10-1
Sensors (Basel). 2019-8-29
Animals (Basel). 2017-4-14