Grigoriev Sergey N, Volosova Marina A, Okunkova Anna A, Fedorov Sergey V, Hamdy Khaled, Podrabinnik Pavel A
Department of High-Efficiency Processing Technologies, Moscow State University of Technology STANKIN, Vadkovsky per. 1, 127055 Moscow, Russia.
Production Engineering and Mechanical Design Department, Faculty of Engineering, Minia University, Minia 61519, Egypt.
Materials (Basel). 2021 Jun 9;14(12):3189. doi: 10.3390/ma14123189.
The mechanism of the material destruction under discharge pulses and material removal mechanism based on the thermochemical nature of the electrical erosion during electrical discharge machining of conductive materials were researched. The experiments were conducted for two structural materials used in the aerospace industry, namely austenite anticorrosion X10CrNiTi18-10 (12kH18N10T) steel and 2024 (D16) duralumin, machined by a brass tool of 0.25 mm in diameter in a deionized water medium. The optimized wire electrical discharge machining factors, measured discharge gaps (recommended offset is 170-175 µm and 195-199 µm, respectively), X-ray photoelectron spectroscopy for both types of materials are reported. Elemental analysis showed the presence of metallic Zn, CuO, iron oxides, chromium oxides, and 58.07% carbides (precipitation and normal atmospheric contamination) for steel and the presence of metallic Zn, CuO, ZnO, aluminum oxide, and 40.37% carbides (contamination) for duralumin. For the first time, calculating the thermochemistry parameters for reactions of Zn(OH), ZnO, and NiO formation was produced. The ability of Ni of chrome-nickel steel to interact with Zn of brass electrode was thermochemically proved. The standard enthalpy of the NiZn intermetallic compound formation (erosion dust) Δ is -225.96 kJ/mol; the entropy of the crystalline phase is 424.64 J/(mol·K).
研究了放电脉冲作用下材料的破坏机理以及基于导电材料电火花加工过程中电蚀热化学性质的材料去除机理。针对航空航天工业中使用的两种结构材料进行了实验,即奥氏体耐腐蚀X10CrNiTi18 - 10(12kH18N10T)钢和2024(D16)硬铝,在直径为0.25 mm的黄铜工具电极、去离子水介质中进行加工。报告了优化的电火花线切割加工参数、测量的放电间隙(推荐的偏移量分别为170 - 175 µm和195 - 199 µm)以及两种材料的X射线光电子能谱分析结果。元素分析表明,钢中存在金属Zn、CuO、铁氧化物、铬氧化物以及58.07%的碳化物(沉淀和正常大气污染),硬铝中存在金属Zn、CuO、ZnO、氧化铝以及40.37%的碳化物(污染)。首次计算了Zn(OH)、ZnO和NiO形成反应的热化学参数。从热化学角度证明了铬镍钢中的Ni与黄铜电极中的Zn发生相互作用的能力。金属间化合物NiZn(腐蚀粉尘)形成的标准焓Δ为 - 225.96 kJ/mol;晶相的熵为424.64 J/(mol·K)。