Suppr超能文献

半监督异常检测在野外视频监控场景中的应用。

Semi-Supervised Anomaly Detection in Video-Surveillance Scenes in the Wild.

机构信息

Department of Electronics, Politechnics School, Campus Universitario S/N, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain.

出版信息

Sensors (Basel). 2021 Jun 9;21(12):3993. doi: 10.3390/s21123993.

Abstract

Surveillance cameras are being installed in many primary daily living places to maintain public safety. In this video-surveillance context, anomalies occur only for a very short time, and very occasionally. Hence, manual monitoring of such anomalies may be exhaustive and monotonous, resulting in a decrease in reliability and speed in emergency situations due to monitor tiredness. Within this framework, the importance of automatic detection of anomalies is clear, and, therefore, an important amount of research works have been made lately in this topic. According to these earlier studies, supervised approaches perform better than unsupervised ones. However, supervised approaches demand manual annotation, making dependent the system reliability of the different situations used in the training (something difficult to set in anomaly context). In this work, it is proposed an approach for anomaly detection in video-surveillance scenes based on a weakly supervised learning algorithm. Spatio-temporal features are extracted from each surveillance video using a temporal convolutional 3D neural network (T-C3D). Then, a novel ranking loss function increases the distance between the classification scores of anomalous and normal videos, reducing the number of false negatives. The proposal has been evaluated and compared against state-of-art approaches, obtaining competitive performance without fine-tuning, which also validates its generalization capability. In this paper, the proposal design and reliability is presented and analyzed, as well as the aforementioned quantitative and qualitative evaluation in-the-wild scenarios, demonstrating its high sensitivity in anomaly detection in all of them.

摘要

监控摄像机正在许多主要的日常生活场所安装,以维护公共安全。在这个视频监控的背景下,异常只在很短的时间内发生,而且非常罕见。因此,手动监控这些异常可能会非常繁琐和单调,导致在紧急情况下由于监控员疲劳而可靠性和速度下降。在这个框架内,自动检测异常的重要性是显而易见的,因此,最近在这个主题上进行了大量的研究工作。根据这些早期的研究,监督方法比无监督方法表现更好。然而,监督方法需要手动标注,这使得系统的可靠性依赖于训练中使用的不同情况(在异常情况下很难设置)。在这项工作中,提出了一种基于弱监督学习算法的视频监控场景异常检测方法。使用时间卷积 3D 神经网络(T-C3D)从每个监控视频中提取时空特征。然后,一种新的排序损失函数增加了异常和正常视频的分类得分之间的距离,减少了误报的数量。该提案已进行了评估和与最先进方法的比较,在无需微调的情况下获得了有竞争力的性能,这也验证了其泛化能力。本文介绍并分析了该提案的设计和可靠性,以及在野外场景中的上述定量和定性评估,证明了其在所有场景中异常检测的高灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/258b/8230050/29399f813e47/sensors-21-03993-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验