Department of Ultrasonography, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
Research & Development Center, CHISON Medical Technologies Co., Ltd, Wuxi, 214142, China.
BMC Med Imaging. 2023 Oct 19;23(1):163. doi: 10.1186/s12880-023-01035-0.
Parameters, such as left ventricular ejection fraction, peak strain dispersion, global longitudinal strain, etc. are influential and clinically interpretable for detection of cardiac disease, while manual detection requires laborious steps and expertise. In this study, we evaluated a video-based deep learning method that merely depends on echocardiographic videos from four apical chamber views of hypertensive cardiomyopathy detection.
One hundred eighty-five hypertensive cardiomyopathy (HTCM) patients and 112 healthy normal controls (N) were enrolled in this diagnostic study. We collected 297 de-identified subjects' echo videos for training and testing of an end-to-end video-based pipeline of snippet proposal, snippet feature extraction by a three-dimensional (3-D) convolutional neural network (CNN), a weakly-supervised temporally correlated feature ensemble, and a final classification module. The snippet proposal step requires a preliminarily trained end-systole and end-diastole timing detection model to produce snippets that begin at end-diastole, and involve contraction and dilatation for a complete cardiac cycle. A domain adversarial neural network was introduced to systematically address the appearance variability of echo videos in terms of noise, blur, transducer depth, contrast, etc. to improve the generalization of deep learning algorithms. In contrast to previous image-based cardiac disease detection architectures, video-based approaches integrate spatial and temporal information better with a more powerful 3D convolutional operator.
Our proposed model achieved accuracy (ACC) of 92%, area under receiver operating characteristic (ROC) curve (AUC) of 0.90, sensitivity(SEN) of 97%, and specificity (SPE) of 84% with respect to subjects for hypertensive cardiomyopathy detection in the test data set, and outperformed the corresponding 3D CNN (vanilla I3D: ACC (0.90), AUC (0.89), SEN (0.94), and SPE (0.84)). On the whole, the video-based methods remarkably appeared superior to the image-based methods, while few evaluation metrics of image-based methods exhibited to be more compelling (sensitivity of 93% and negative predictive value of 100% for the image-based methods (ES/ED and random)).
The results supported the possibility of using end-to-end video-based deep learning method for the automated diagnosis of hypertensive cardiomyopathy in the field of echocardiography to augment and assist clinicians.
Current Controlled Trials ChiCTR1900025325, Aug, 24, 2019. Retrospectively registered.
参数,如左心室射血分数、峰值应变弥散、整体纵向应变等,对心脏疾病的检测具有重要影响和临床解释意义,而手动检测则需要繁琐的步骤和专业知识。在这项研究中,我们评估了一种基于视频的深度学习方法,该方法仅依赖于高血压性心肌病检测的四个心尖腔视图的超声心动图视频。
本诊断研究纳入了 185 例高血压性心肌病(HTCM)患者和 112 例健康正常对照(N)。我们收集了 297 名经过身份识别的受试者的超声心动图视频,用于训练和测试端到端基于视频的片段提案、通过三维(3D)卷积神经网络(CNN)提取片段特征、弱监督的时间相关特征集成以及最终分类模块的管道。片段提案步骤需要一个初步训练的收缩末期和舒张末期计时检测模型来生成从舒张末期开始的片段,并涉及完整的心动周期的收缩和扩张。引入了一个域对抗神经网络,以系统地解决回声视频在噪声、模糊、换能器深度、对比度等方面的外观变化,从而提高深度学习算法的泛化能力。与以前基于图像的心脏疾病检测架构相比,基于视频的方法可以更好地整合空间和时间信息,并且具有更强大的 3D 卷积运算符。
我们提出的模型在测试数据集的受试者中实现了 92%的准确性(ACC)、0.90 的接收器操作特征曲线(ROC)曲线下面积(AUC)、97%的敏感性(SEN)和 84%的特异性(SPE),用于高血压性心肌病检测,并优于相应的 3D CNN(vanilla I3D:ACC(0.90)、AUC(0.89)、SEN(0.94)和 SPE(0.84))。总的来说,基于视频的方法明显优于基于图像的方法,而基于图像的方法的几个评估指标则表现出更有说服力(基于图像的方法的敏感性为 93%,阴性预测值为 100%(ES/ED 和随机))。
这些结果支持在超声心动图领域使用端到端基于视频的深度学习方法来自动诊断高血压性心肌病,以增强和辅助临床医生。
中国临床试验注册中心 ChiCTR1900025325,2019 年 8 月 24 日。回顾性注册。