Suppr超能文献

全景X光片上的全景分割:基于深度学习的包括上颌窦和下颌管在内的各种结构的分割

Panoptic Segmentation on Panoramic Radiographs: Deep Learning-Based Segmentation of Various Structures Including Maxillary Sinus and Mandibular Canal.

作者信息

Cha Jun-Young, Yoon Hyung-In, Yeo In-Sung, Huh Kyung-Hoe, Han Jung-Suk

机构信息

Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Daehak-ro 101, Jongro-gu, Seoul 03080, Korea.

Department of Oral and Maxillofacial Radiology, School of Dentistry and Dental Research Institute, Seoul National University, Daehak-ro 101, Jongro-gu, Seoul 03080, Korea.

出版信息

J Clin Med. 2021 Jun 11;10(12):2577. doi: 10.3390/jcm10122577.

Abstract

Panoramic radiographs, also known as orthopantomograms, are routinely used in most dental clinics. However, it has been difficult to develop an automated method that detects the various structures present in these radiographs. One of the main reasons for this is that structures of various sizes and shapes are collectively shown in the image. In order to solve this problem, the recently proposed concept of panoptic segmentation, which integrates instance segmentation and semantic segmentation, was applied to panoramic radiographs. A state-of-the-art deep neural network model designed for panoptic segmentation was trained to segment the maxillary sinus, maxilla, mandible, mandibular canal, normal teeth, treated teeth, and dental implants on panoramic radiographs. Unlike conventional semantic segmentation, each object in the tooth and implant classes was individually classified. For evaluation, the panoptic quality, segmentation quality, recognition quality, intersection over union (IoU), and instance-level IoU were calculated. The evaluation and visualization results showed that the deep learning-based artificial intelligence model can perform panoptic segmentation of images, including those of the maxillary sinus and mandibular canal, on panoramic radiographs. This automatic machine learning method might assist dental practitioners to set up treatment plans and diagnose oral and maxillofacial diseases.

摘要

全景X线片,也称为曲面体层片,在大多数牙科诊所中经常使用。然而,开发一种能检测这些X线片中各种结构的自动化方法一直很困难。造成这种情况的主要原因之一是图像中共同显示了各种大小和形状的结构。为了解决这个问题,最近提出的将实例分割和语义分割相结合的全景分割概念被应用于全景X线片。一个为全景分割设计的先进深度神经网络模型经过训练,用于在全景X线片上分割上颌窦、上颌骨、下颌骨、下颌管、正常牙齿、治疗过的牙齿和牙种植体。与传统的语义分割不同,牙齿和种植体类别的每个对象都被单独分类。为了进行评估,计算了全景质量、分割质量、识别质量、交并比(IoU)和实例级IoU。评估和可视化结果表明,基于深度学习的人工智能模型可以对全景X线片上的图像进行全景分割,包括上颌窦和下颌管的图像。这种自动机器学习方法可能有助于牙科医生制定治疗计划和诊断口腔颌面疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/065b/8230590/9b56ba462e28/jcm-10-02577-g001.jpg

相似文献

4
Transformer-Based Deep Learning Network for Tooth Segmentation on Panoramic Radiographs.
J Syst Sci Complex. 2023;36(1):257-272. doi: 10.1007/s11424-022-2057-9. Epub 2022 Oct 14.
5
Deep learning-based identification of mesiodens using automatic maxillary anterior region estimation in panoramic radiography of children.
Dentomaxillofac Radiol. 2022 Sep 1;51(7):20210528. doi: 10.1259/dmfr.20210528. Epub 2022 Jul 13.
6
Deep learning-based automatic segmentation of the mandibular canal on panoramic radiographs: A multi-device study.
Imaging Sci Dent. 2024 Mar;54(1):81-91. doi: 10.5624/isd.20230245. Epub 2024 Feb 22.
7
Robust automated teeth identification from dental radiographs using deep learning.
J Dent. 2023 Sep;136:104607. doi: 10.1016/j.jdent.2023.104607. Epub 2023 Jul 6.
8
A novel collaborative learning model for mixed dentition and fillings segmentation in panoramic radiographs.
J Dent. 2024 Jan;140:104779. doi: 10.1016/j.jdent.2023.104779. Epub 2023 Nov 24.
9
Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2020 Jun;129(6):635-642. doi: 10.1016/j.oooo.2019.11.007. Epub 2019 Nov 15.

引用本文的文献

1
2
[Strategies for prevention and treatment of vascular and nerve injuries in mandibular anterior implant surgery].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2024 Oct 25;53(5):550-560. doi: 10.3724/zdxbyxb-2024-0256.
3
Automatic segmentation of the maxillary sinus on cone beam computed tomographic images with U-Net deep learning model.
Eur Arch Otorhinolaryngol. 2024 Nov;281(11):6111-6121. doi: 10.1007/s00405-024-08870-z. Epub 2024 Jul 31.
5
Insights into Predicting Tooth Extraction from Panoramic Dental Images: Artificial Intelligence vs. Dentists.
Clin Oral Investig. 2024 Jun 18;28(7):381. doi: 10.1007/s00784-024-05781-5.
6
AI model to detect contact relationship between maxillary sinus and posterior teeth.
Heliyon. 2024 May 10;10(10):e31052. doi: 10.1016/j.heliyon.2024.e31052. eCollection 2024 May 30.
7
Deep learning-based automatic segmentation of the mandibular canal on panoramic radiographs: A multi-device study.
Imaging Sci Dent. 2024 Mar;54(1):81-91. doi: 10.5624/isd.20230245. Epub 2024 Feb 22.
8
Surgical Navigation in the Anterior Skull Base Using 3-Dimensional Endoscopy and Surface Reconstruction.
JAMA Otolaryngol Head Neck Surg. 2024 Apr 1;150(4):318-326. doi: 10.1001/jamaoto.2024.0013.
9
Panoramic imaging errors in machine learning model development: a systematic review.
Dentomaxillofac Radiol. 2024 Mar 25;53(3):165-172. doi: 10.1093/dmfr/twae002.
10
From bench to bedside - current clinical and translational challenges in fibula free flap reconstruction.
Front Med (Lausanne). 2023 Oct 11;10:1246690. doi: 10.3389/fmed.2023.1246690. eCollection 2023.

本文引用的文献

1
Convolutional Neural Networks for Automated Fracture Detection and Localization on Wrist Radiographs.
Radiol Artif Intell. 2019 Jan 30;1(1):e180001. doi: 10.1148/ryai.2019180001. eCollection 2019 Jan.
2
Generalizability of deep learning models for dental image analysis.
Sci Rep. 2021 Mar 17;11(1):6102. doi: 10.1038/s41598-021-85454-5.
3
Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network.
Dentomaxillofac Radiol. 2020 Dec 1;49(8):20200185. doi: 10.1259/dmfr.20200185. Epub 2020 Jul 3.
6
Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2020 Jun;129(6):635-642. doi: 10.1016/j.oooo.2019.11.007. Epub 2019 Nov 15.
7
Convolutional neural networks for dental image diagnostics: A scoping review.
J Dent. 2019 Dec;91:103226. doi: 10.1016/j.jdent.2019.103226. Epub 2019 Nov 5.
9
Deep learning based retinal OCT segmentation.
Comput Biol Med. 2019 Nov;114:103445. doi: 10.1016/j.compbiomed.2019.103445. Epub 2019 Sep 17.
10
Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2019 Oct;128(4):424-430. doi: 10.1016/j.oooo.2019.05.014. Epub 2019 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验