文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工智能技术对全景X光片上的气道和软组织进行分割。

Segmentation of airways and soft tissues on panoramic radiographs using artificial intelligence technology.

作者信息

Şahan Keskin Aslıhan, Eninanç İlknur

机构信息

Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Sivas Cumhuriyet University, Sivas, Turkey.

出版信息

BMC Oral Health. 2025 Jun 2;25(1):876. doi: 10.1186/s12903-025-06187-9.


DOI:10.1186/s12903-025-06187-9
PMID:40457353
Abstract

BACKGROUND: Segmentation of airways and soft tissues on panoramic radiographs is a challenging yet crucial task in dental diagnostics, as these regions can often be confused with fractures or other lesions due to superimposition. This study aimed to perform segmentation of both airways and soft tissues on panoramic radiographs simultaneously using an artificial intelligence (AI)-based model. METHODS: Segmentation masks were created by annotating the nasal, oral, and oropharyngeal airways, along with the tongue, soft palate, and uvula, on 1,004 panoramic radiographs. Data augmentation and image processing techniques were applied to enhance dataset diversity. Of the radiographs, 72% were allocated for training, 18% for validation, and 10% for testing. A custom AI model based on the ResUNet architecture, comprising 74 layers and 24.3 million parameters, was developed utilizing the TensorFlow library. Performance metrics, including accuracy, precision, sensitivity, specificity, F1 score, intersection over union (IoU), and mean average precision (mAP) were evaluated. RESULTS: The areas AI model achieved an accuracy of 0.979, precision of 0.869, sensitivity of 0.870, specificity of 0.925, F1 score of 0.870, IoU of 0.777, and mAP of 0.500. Intra-observer agreement values ranged from 0.762 to 0.958. CONCLUSIONS: To our knowledge, this is the first study to develop an AI -based model for segmentation of airways and soft tissues on panoramic radiographs. The proposed algorithm demonstrated high accuracy in identifying the regions of interest, enabling rapid and efficient radiographic analysis. This model has the potential to enhance decision support systems and reduce the risk of misdiagnosis. CLINICAL TRIAL NUMBER: Not applicable.

摘要

背景:在牙科诊断中,全景X线片上气道和软组织的分割是一项具有挑战性但又至关重要的任务,因为这些区域常常因重叠而与骨折或其他病变相混淆。本研究旨在使用基于人工智能(AI)的模型同时对全景X线片上的气道和软组织进行分割。 方法:通过在1004张全景X线片上标注鼻腔、口腔和口咽气道以及舌头、软腭和悬雍垂来创建分割掩码。应用数据增强和图像处理技术来提高数据集的多样性。在这些X线片中,72%用于训练,18%用于验证,10%用于测试。利用TensorFlow库开发了一种基于ResUNet架构的定制AI模型,该模型包含74层和2430万个参数。评估了包括准确率、精确率、灵敏度、特异性、F1分数、交并比(IoU)和平均平均精度(mAP)在内的性能指标。 结果:该AI模型在各区域的准确率为0.979,精确率为0.869,灵敏度为0.870,特异性为0.925,F1分数为0.870,IoU为0.777,mAP为0.500。观察者内一致性值范围为0.762至0.958。 结论:据我们所知,这是第一项开发基于AI的模型用于全景X线片上气道和软组织分割的研究。所提出的算法在识别感兴趣区域方面表现出高准确率,能够实现快速高效的放射学分析。该模型有可能增强决策支持系统并降低误诊风险。 临床试验编号:不适用。

相似文献

[1]
Segmentation of airways and soft tissues on panoramic radiographs using artificial intelligence technology.

BMC Oral Health. 2025-6-2

[2]
A U-Net Approach to Apical Lesion Segmentation on Panoramic Radiographs.

Biomed Res Int. 2022

[3]
Artificial Intelligence-Based Detection and Numbering of Dental Implants on Panoramic Radiographs.

Clin Implant Dent Relat Res. 2025-2

[4]
Segmentation of periapical lesions with automatic deep learning on panoramic radiographs: an artificial intelligence study.

BMC Oral Health. 2024-11-1

[5]
Combining public datasets for automated tooth assessment in panoramic radiographs.

BMC Oral Health. 2024-3-26

[6]
Detection of dental caries under fixed dental prostheses by analyzing digital panoramic radiographs with artificial intelligence algorithms based on deep learning methods.

BMC Oral Health. 2025-2-10

[7]
Detection and Segmentation of Radiolucent Lesions in the Lower Jaw on Panoramic Radiographs Using Deep Neural Networks.

Medicina (Kaunas). 2023-12-9

[8]
Automatic segmentation and detection of ectopic eruption of first permanent molars on panoramic radiographs based on nnU-Net.

Int J Paediatr Dent. 2022-11

[9]
Artificial intelligence-based detection of dens invaginatus in panoramic radiographs.

BMC Oral Health. 2025-6-5

[10]
Artificial intelligence for osteoporosis detection on panoramic radiography: A systematic review and meta analysis.

J Dent. 2025-5

本文引用的文献

[1]
Development of an AI-Supported Clinical Tool for Assessing Mandibular Third Molar Tooth Extraction Difficulty Using Panoramic Radiographs and YOLO11 Sub-Models.

Diagnostics (Basel). 2025-2-13

[2]
Segmentation of periapical lesions with automatic deep learning on panoramic radiographs: an artificial intelligence study.

BMC Oral Health. 2024-11-1

[3]
Integrating Artificial Intelligence in Dental Education: An Urgent Call for Dedicated Postgraduate Programs.

Int Dent J. 2024-12

[4]
Deep learning-based prediction of indication for cracked tooth extraction using panoramic radiography.

BMC Oral Health. 2024-8-16

[5]
YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition.

BMC Med Imaging. 2024-7-11

[6]
Detection and classification of mandibular fractures in panoramic radiography using artificial intelligence.

Dentomaxillofac Radiol. 2024-9-1

[7]
Implementing a deep learning model for automatic tongue tumour segmentation in ex-vivo 3-dimensional ultrasound volumes.

Br J Oral Maxillofac Surg. 2024-4

[8]
Detection of periodontal bone loss patterns and furcation defects from panoramic radiographs using deep learning algorithm: a retrospective study.

BMC Oral Health. 2024-1-31

[9]
Learning with limited annotations: A survey on deep semi-supervised learning for medical image segmentation.

Comput Biol Med. 2024-2

[10]
An artificial intelligence study: automatic description of anatomic landmarks on panoramic radiographs in the pediatric population.

BMC Oral Health. 2023-10-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索