Tian Shuyu, Stevens Rory, McInnes Bridget T, Lewinski Nastassja A
Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
Micromachines (Basel). 2021 Jun 30;12(7):780. doi: 10.3390/mi12070780.
Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time- and resource-intensive and not easily translatable to other laboratories. This study approaches EBB parameter optimization through machine learning (ML) models trained using data collected from the published literature. We investigated regression-based and classification-based ML models and their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite bioinks. In addition, we interrogated if regression-based models can predict suitable extrusion pressure given the desired cell viability when keeping other experimental parameters constant. We also compared models trained across data from general literature to models trained across data from one literature source that utilized alginate and gelatin bioinks. The results indicate that models trained on large amounts of data can impart physical trends on cell viability, filament diameter, and extrusion pressure seen in past literature. Regression models trained on the larger dataset also predict cell viability closer to experimental values for material concentration combinations not seen in training data of the single-paper-based regression models. While the best performing classification models for cell viability can achieve an average prediction accuracy of 70%, the cell viability predictions remained constant despite altering input parameter combinations. Our trained models on bioprinting literature data show the potential usage of applying ML models to bioprinting experimental design.
已通过实验系统地开展了基于挤出的生物打印(EBB)参数的优化。然而,该过程耗时且资源密集,并且不易转化到其他实验室。本研究通过使用从已发表文献中收集的数据训练的机器学习(ML)模型来进行EBB参数优化。我们研究了基于回归和基于分类的ML模型,以及它们预测含细胞的藻酸盐和明胶复合生物墨水的细胞活力和细丝直径打印结果的能力。此外,我们探讨了在保持其他实验参数不变的情况下,基于回归的模型是否能够在给定所需细胞活力时预测合适的挤出压力。我们还比较了基于一般文献数据训练的模型与基于利用藻酸盐和明胶生物墨水的单一文献来源数据训练的模型。结果表明,基于大量数据训练的模型可以呈现过去文献中所见的细胞活力、细丝直径和挤出压力的物理趋势。在更大数据集上训练的回归模型对于基于单篇论文的回归模型训练数据中未出现的材料浓度组合,预测的细胞活力也更接近实验值。虽然细胞活力方面表现最佳的分类模型平均预测准确率可达70%,但尽管改变输入参数组合,细胞活力预测结果仍保持不变。我们在生物打印文献数据上训练的模型展示了将ML模型应用于生物打印实验设计的潜在用途。