Suppr超能文献

一种用于准确预测基于藻酸盐-明胶的水凝胶生物墨水挤出可打印性的系统热分析

A Systematic Thermal Analysis for Accurately Predicting the Extrusion Printability of Alginate-Gelatin-Based Hydrogel Bioinks.

作者信息

Li Qi, Zhang Bin, Xue Qian, Zhao Chunxiao, Luo Yichen, Zhou Hongzhao, Ma Liang, Yang Huayong, Bai Dapeng

机构信息

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China.

School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.

出版信息

Int J Bioprint. 2021 Jun 22;7(3):394. doi: 10.18063/ijb.v7i3.394. eCollection 2021.

Abstract

Three-dimensional (3D) bioprinting has significant potential for addressing the global problem of organ shortages. Extrusion printing is a versatile 3D bioprinting technique, but its low accuracy currently limits the solution. This lack of precision is attributed largely to the complex thermal and dynamic properties of bioinks and makes it difficult to provide accurate estimations of the printed results. It is necessary to understand the relationship between printing temperature and materials' printability to address this issue. This paper proposes a quantitative thermal model incorporating a system's printing temperatures (syringe, ambient, and bioink) to facilitate accurate estimations of the printing outcomes. A physical model was established to reveal the relationship between temperature, pressure, and velocity in guiding the printing of sodium alginate-gelatin composite hydrogel (a popular bioink) to optimize its extrusion-based printability. The model considered the phenomenon of bioink die swells after extrusion. A series of extrusion experiments confirmed that the proposed model offers enhanced printing outcome estimations compared with conventional models. Two types of nozzles (32- and 23-gauge) were used to print several sets of lines with a linewidth step of 50 mm by regulating the extrudate's temperature, pressure, and velocity separately. The study confirmed the potential for establishing a reasonable, accurate open-loop linewidth control based on the proposed optimization method to expand the application of extrusion-based bioprinting further.

摘要

三维(3D)生物打印在解决全球器官短缺问题方面具有巨大潜力。挤出打印是一种通用的3D生物打印技术,但其目前较低的精度限制了该解决方案。这种精度不足很大程度上归因于生物墨水复杂的热学和动力学特性,使得难以对打印结果进行准确估计。有必要了解打印温度与材料可打印性之间的关系以解决这一问题。本文提出了一个定量热模型,该模型纳入了系统的打印温度(注射器、环境和生物墨水),以促进对打印结果的准确估计。建立了一个物理模型来揭示温度、压力和速度之间的关系,以指导藻酸钠 - 明胶复合水凝胶(一种常用的生物墨水)的打印,从而优化其基于挤出的可打印性。该模型考虑了生物墨水挤出后胀模的现象。一系列挤出实验证实,与传统模型相比,所提出的模型能提供更准确的打印结果估计。使用两种类型的喷嘴(32号和23号),通过分别调节挤出物的温度、压力和速度,以50毫米的线宽步长打印了几组线条。该研究证实了基于所提出的优化方法建立合理、准确的开环线宽控制的潜力,以进一步扩大基于挤出的生物打印的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9e0/8287498/fd14a1a73ed4/IJB-7-3-394-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验