Arjoca Stelian, Bojin Florina, Neagu Monica, Păunescu Andreea, Neagu Adrian, Păunescu Virgil
Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania.
Center for Modeling Biological Systems and Data Analysis, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania.
Gels. 2024 Jan 27;10(2):103. doi: 10.3390/gels10020103.
Three-dimensional (3D) bioprinting is the use of computer-controlled transfer processes for assembling bioinks (cell clusters or materials loaded with cells) into structures of prescribed 3D organization. The correct bioprinting parameters ensure a fast and accurate bioink deposition without exposing the cells to harsh conditions. This study seeks to optimize pneumatic extrusion-based bioprinting based on hydrogel flow rate and extrusion speed measurements. We measured the rate of the hydrogel flow through a cylindrical nozzle and used non-Newtonian hydrodynamics to fit the results. From the videos of free-hanging hydrogel strands delivered from a stationary print head, we inferred the extrusion speed, defined as the speed of advancement of newly formed strands. Then, we relied on volume conservation to evaluate the extrudate swell ratio. The theoretical analysis enabled us to compute the extrusion speed for pressures not tested experimentally as well as the printing speed needed to deposit hydrogel filaments of a given diameter. Finally, the proposed methodology was tested experimentally by analyzing the morphology of triple-layered square-grid hydrogel constructs printed at various applied pressures while the printing speeds matched the corresponding extrusion speeds. Taken together, the results of this study suggest that preliminary measurements and theoretical analyses can simplify the search for the optimal bioprinting parameters.
三维(3D)生物打印是利用计算机控制的转移过程,将生物墨水(细胞簇或负载细胞的材料)组装成具有规定三维结构的组织。正确的生物打印参数可确保生物墨水快速准确地沉积,同时不会使细胞暴露于恶劣条件下。本研究旨在基于水凝胶流速和挤出速度测量,优化基于气动挤出的生物打印。我们测量了水凝胶通过圆柱形喷嘴的流速,并使用非牛顿流体动力学对结果进行拟合。从固定打印头喷出的自由悬挂水凝胶细丝的视频中,我们推断出挤出速度,即新形成细丝的前进速度。然后,我们依靠体积守恒来评估挤出物膨胀率。理论分析使我们能够计算未通过实验测试的压力下的挤出速度,以及沉积给定直径水凝胶细丝所需的打印速度。最后,通过分析在不同施加压力下打印的三层方形网格水凝胶结构的形态,对所提出的方法进行了实验测试,同时打印速度与相应的挤出速度相匹配。综上所述,本研究结果表明,初步测量和理论分析可以简化对最佳生物打印参数的搜索。